UN/CEFACT Project Proposal

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>RDM2API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date submitted:</td>
<td>06-May-2019</td>
</tr>
<tr>
<td>Proposed by:</td>
<td>Steven Capell</td>
</tr>
</tbody>
</table>

1. Work package purpose

Required

To define a standard methodology that can be used to produce high quality OpenAPI specifications and JSON-LD dictionaries from existing UN/CEFACT semantic library content, particularly the Reference Data Models (RDM). The methodology will be complete and proven successful when users can:

- **Re-use our semantics**: UN/CEFACT library content (RDM) can be imported into any conformant modelling tool or semantic tool.
- **Model consistently**: API Resource / Event models and JSON-LD dictionaries can be created in any conformant modelling tool and easily mapped to the imported RDM definitions.
- **Publish specifications**: API reference specifications (Including OpenAPI3.0 and JSON-LD) can be generated from the modelling tool and published to open platforms such as Github.
- **Test conformance of their implementations**: Actual API implementations can be tested against the reference specifications and a conformance report generated.

We will know this work is successful when the world wide community of web developers are actively using UN/CEFACT semantic standards in their Trade & Transport system Web APIs.

2. Work package scope

Required

The dark blue boxes on the architecture diagram below highlight the specific work items in this work package.
A UN/CEFACT business expert would use conformant modelling tools as follows.

- Import reference libraries such as UN/CEFACT RDM.
- Define web resources and their state lifecycles using simple UML class and state-chart diagrams.
- Link relevant semantic definitions from the imported RDMs to the web resources.
- Generate Open API 3.0 reference specifications and publish them to any platform that is readily accessible to web developers.
- Generate JSON-LD dictionaries for use by any semantic processor.

A web developer that is charged with implementing web APIs that comply with UN/CEFACT standards would use the published specifications as follows.

- Import the Open API 3.0 reference specification into their preferred web development tool.
- Implement an API in accordance with the specification, including any non-breaking extensions.
- Run the open source test harness against their implementation and publish the conformance report.

3. Work package deliverables

Required

<table>
<thead>
<tr>
<th>Deliverable 1:</th>
<th>Guideline on Model interchange. A simple and standard JSON structure/schema for the interchange of API models between conformant modelling tools. A DSL (domain specific language) approach is preferred here because it will be simpler and more stable than XMI (interchange standard for UML tools) and will allow non-UML based tools to participate equally in the market.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deliverable 2:</td>
<td>Guideline on Open API UML Profile. A simple UML profile that defines a consistent approach to modelling web resources in UML. A UML class diagram profile for web resources, verbs, paths, and associated</td>
</tr>
</tbody>
</table>
| Deliverable 3: | **Guideline on Open API 3.0 NDR and interface conformance rules.**
Serialisation rules for the generation of Open API 3.0 specifications from models. A set of testable rules, supported by an open source testing tool that can assess any actual API implementation against the corresponding UN/CEFACT reference API specification. The rules would allow (but report) non-breaking extensions and would deny (and alert) breaking changes. A non-breaking change is one where a conformant API consumer is not impacted by the extensions. |
| Deliverable 4: | **Guideline on JSON-LD NDR and dictionary conformance rules.**
Serialisation rules for the generation of JSON-LD dictionaries from models. A set of testable rules supported by an open source testing tool that can assess any JSON-LD snippet for conformance against the UN/CEFACT JSON-LD dictionary. |

4. Exit Criteria

Exit Criteria for Deliv. 1:	Guideline ready for publication
Exit Criteria for Deliv. 2:	Guideline ready for publication
Exit Criteria for Deliv. 3:	Guideline ready for publication
Exit Criteria for Deliv. 4:	Guideline ready for publication

5. Project team membership and required functional expertise

Membership is open to UN/CEFACT experts with broad knowledge in the area of:

- Information Modelling
- REST API Design
- UML

In addition, Heads of Delegations may invite technical experts from their constituency to participate in the work.

Experts are expected to contribute to the work based solely on their expertise and to comply with the UN/CEFACT Code of Conduct and Ethics and the policy on Intellectual Property Rights.

6. HoD support

Required for Technical Standards, Business Standards and UNECE Recommendations. And at the request of the UN/CEFACT Bureau.

Projects that require HoD support must obtain this within 6 months of Bureau provisional approval.

Australia	
UK	
Singapore	

7. Geographical focus

The geographical focus of the project is global.

8. Initial contributions

The following contributions are submitted as part of this proposal. It is understood that these contributions are only for consideration by the Project Team and that other participants may submit additional contributions in order to ensure that as much information as possible is obtained from those with expertise and a material interest in the project. It is also understood that the Project Team may choose to adopt one or more of these contributions “as is”.

A UML state chart profile for web resource state lifecycles and events.
9. Resource requirements

Participants in the project shall provide resources for their own participation. The existence and functioning of the project shall not require any additional resources from the UNECE secretariat.

Any additional request: None

10. Proposed project leadership

Proposed co-lead (deliverables 1 & 2)	Steven Capell	E-mail: Steve.capell@gmail.com
Proposed co-lead (deliverable 3) | Andreas Pelekies | E-mail: andreas.pelekies@gefeg.com
Proposed co-lead (deliverables 4) | Nis Jespersen | E-Mail: nis.jespersen@maersk.com

11. Milestones (dates vary by deliverable)

<table>
<thead>
<tr>
<th>Required?</th>
<th>ODP Stage</th>
<th>Deliv 1 & 2</th>
<th>Deliv 3</th>
<th>Deliv 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Project Inception</td>
<td>July 2019</td>
<td>July 2019</td>
<td>July 2019</td>
</tr>
<tr>
<td>Y</td>
<td>Requirements gathering</td>
<td>Aug 2019</td>
<td>Sept 2019</td>
<td>Sept 2019</td>
</tr>
<tr>
<td>Y</td>
<td>Draft development</td>
<td>Oct 2019</td>
<td>Nov 2019</td>
<td>Nov 2019</td>
</tr>
<tr>
<td>Y</td>
<td>Implementation verification</td>
<td>Jan 2020</td>
<td>Mar 2020</td>
<td>Mar 2020</td>
</tr>
<tr>
<td>N</td>
<td>Public Draft Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Exit & Publication</td>
<td>May 2020</td>
<td>July 2020</td>
<td>July 2020</td>
</tr>
</tbody>
</table>