

T
E

C
H

N
IC

A
L

 W
H

IT
E

 P
A

P
E

R
 r

E-business
Collaboration Design
Patterns

Ve r s i on 2

27 Oc tobe r 2000

 E-business Collaboration Design Patterns

The information contained in this document represents the current views of Edifecs on the issues discussed as of the date of publication. Because Edifecs must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Edifecs, and Edifecs cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. EDIFECS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Product and company names mentioned herein may be the trademarks of their respective owners, Edifecs, CommerceDesk, and SpecBuilder are trademarks of Edifecs.

©2000 Edifecs.

Contents
Executive Summary ___i
Preface__ ii
1 Introduction ___ 1
2 Business Information Structure Design Patterns __ 2

2.1 The Reference Design Pattern __ 2
2.2 Query/Response Business Document Design Pattern __________________________________ 5
2.3 Disjunction Design Pattern __ 9
2.4 Reification Design Pattern __ 11
2.5 UML/XML Translation Design Pattern ___ 13
2.6 Business Document Design Pattern ___ 16
2.7 Request/Response Business Document Design Pattern ________________________________ 18

3 Business Information Flow Design Patterns___ 22
3.1 Commercial Transaction Design Pattern ___ 22

3.1.1 Commercial Transaction State Semantics___________________________________ 24
3.1.2 Commercial Transaction Design Rationale__________________________________ 29
3.1.3 Business Transaction Design Pattern ______________________________________ 35
3.1.4 Query/Response Design Pattern ___ 37
3.1.5 Request/Response Design Pattern __ 38
3.1.6 Request/Confirm Design Pattern ___ 39
3.1.7 Information Distribution Design Pattern ___________________________________ 40
3.1.8 Notification Design Pattern ___ 41

3.2 Business Collaboration Protocol Design Pattern _____________________________________ 42
3.2.1 Acceptance Business Collaboration Design Pattern ___________________________ 43

3.3 Network Component Interaction Diagram Pattern ___________________________________ 44
3.3.1 Service-Service___ 44
3.3.2 Agent-Service-Service ___ 49
3.3.3 Service-Service-Agent ___ 54
3.3.4 Service-Agent-Service ___ 59
3.3.5 Agent-Service-Agent __ 65

Appendix I: Example Commercial Contract Formations__ 70
Appendix II: Understanding Commercial Contracts using X12/EDI ___________________________________ 72

 E-business Collaboration Design Patterns

© 2000 Edifecs

Examples
Example 2.1 Document Schema for Reference Design Pattern _____________________________________ 3
Example 2.2 Valid Reference Design Pattern Document Instance ___________________________________ 4
Example 2.3 Query/Response Document Schema ___ 7
Example 2.4 An Example Product Information Query __ 7
Example 2.5 An Example Product Information Query Response ____________________________________ 8
Example 2.6 Disjunction Design Pattern Document Schema ______________________________________ 10
Example 2.7 Reification Document Schema ___ 12
Example 2.8 Document Schema Example __ 15
Example 2.9 Role Specification in a Business Document ___ 16
Example 2.10 Contact Information in a Business Document ____________________________________ 16
Example 2.11 Supply Chain Specification in a Supply Chain _____________________________________ 17
Example 2.12 Document Identifier in a Business Document ____________________________________ 17
Example 2.13 Data and Time Stamp in a Business Document ___________________________________ 17
Example 2.14 Request/Response Document Schema__ 19
Example 2.15 Product Availability Request Example __ 20
Example 2.16 Product Availability Response Example ___ 21

Figures
Figure 2.1 A Reference Relationship between Entities __ 2
Figure 2.2 Illustration Showing Referenced Entity in Parenthesis __________________________________ 3
Figure 2.3 Query/Response Data Entity Model ___ 6
Figure 2.4 Disjunctive Data Entity Model __ 9
Figure 2.5 Disjunction Illustrated in a Message Guideline_______________________________________ 10
Figure 2.6 Illustration of a Free Form Text Entity___ 11
Figure 2.7 Illustration of Reified Data Entities ___ 12
Figure 2.8 Illustration of a Data Entity Model __ 13
Figure 2.9 Illustration of a Canonical Hierarchy __ 14
Figure 2.10 Request/Response Data Entity Model ___ 19
Figure 3.1 Commercial Transaction without Responding Business Document _______________________ 23
Figure 3.2 Commercial Transaction with Responding Business Document__________________________ 24
Figure 3.3 Commercial Transaction with No Contract Failure State ______________________________ 27
Figure 3.4 ACKNOWLEDGMENT of Receipt Closing Message__________________________________ 30
Figure 3.5 ACKNOWLEDGMENT of Business Acceptance Closing Message _______________________ 31
Figure 3.6 Responding Business Document is Closing Message __________________________________ 32
Figure 3.7 Receipt, Business Acceptance and Business Document Response ________________________ 33
Figure 3.8 Business Transaction Activity Design Pattern _______________________________________ 35

 E-business Collaboration Design Patterns

© 2000 Edifecs

Figure 3.9 Query/Response Activity Design Pattern ___ 37
Figure 3.10 Request/Response Activity Design Pattern ___ 38
Figure 3.11 Request/Response Activity Design Pattern ___ 39
Figure 3.12 Information Distribution Design Pattern ___ 40
Figure 3.13 Notification Design Pattern ___ 41
Figure 3.14 Acceptance Business Collaboration ___ 43
Figure 3.15 Service-Service Interaction Pattern—I___ 44
Figure 3.16 Service-Service Interaction Pattern—II __ 45
Figure 3.17 Service-Service Interaction Pattern—III __ 46
Figure 3.18 Service-Service Interaction Pattern—IV__ 47
Figure 3.19 Service-Service Interaction Pattern—V __ 48
Figure 3.20 Agent-Service-Service Interaction Pattern—I__ 49
Figure 3.21 Agent-Service-Service Interaction Pattern—II _______________________________________ 50
Figure 3.22 Agent-Service-Service Interaction Pattern—III_______________________________________ 51
Figure 3.23 Agent-Service-Service Interaction Pattern—IV ______________________________________ 52
Figure 3.24 Agent-Service-Service Interaction Pattern—V _______________________________________ 53
Figure 3.25 Service-Service-Agent Interaction Pattern—I__ 54
Figure 3.26 Service-Service-Agent Interaction Pattern—II _______________________________________ 55
Figure 3.27 Service-Service-Agent Interaction Pattern—III_______________________________________ 56
Figure 3.28 Service-Service-Agent Interaction Pattern—IV ______________________________________ 57
Figure 3.29 Service-Service-Agent Interaction Pattern—V _______________________________________ 58
Figure 3.30 Service-Agent-Service Interaction Pattern—I__ 59
Figure 3.31 Service-Agent-Service Interaction Pattern—II _______________________________________ 60
Figure 3.32 Service-Agent-Service Interaction Pattern—III_______________________________________ 61
Figure 3.33 Service-Agent-Service Interaction Pattern—IV ______________________________________ 62
Figure 3.34 Service-Agent-Service Interaction Pattern—V _______________________________________ 63
Figure 3.35 Service-Agent-Service Interaction Pattern—VI ______________________________________ 64
Figure 3.36 Agent-Service-Agent Interaction Pattern—I___ 65
Figure 3.37 Agent-Service-Agent Interaction Pattern—II __ 66
Figure 3.38 Agent-Service-Agent Interaction Pattern—III__ 67
Figure 3.39 Agent-Service-Agent Interaction Pattern—IV _______________________________________ 68
Figure 3.40 Agent-Service-Agent Interaction Pattern—V __ 69

 E-business Collaboration Design Patterns

© 2000 Edifecs

Tables
Table 3.1 Time-out Parameters for ACKNOWLEDGMENT of Receipt ___________________________ 30
Table 3.2 Time-out Parameters for ACKNOWLEDGMENT of Acceptance ________________________ 32
Table 3.3 Time-out Parameters When Closing Message Is a Business Document ____________________ 33
Table 3.4 Time-out Parameters for Receipt, Business Acceptance and Business Document Response ____ 34

 E-business Collaboration Design Patterns

© 2000 Edifecs Page i of iii

Executive
Summary

The e-business collaboration modeling metamodel (see BCF#7 document “E-
business Collaboration Modeling Metamodel”) provides a framework for
constructing e-business collaboration model specifications. This document
describes the design patterns that apply the metamodel to represent specific
business process scenarios.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page ii of iii

Preface
Design patterns are reusable, generalized business process abstractions that can
be applied to many domains. A metamodel provides the syntax and grammar for
expressing designs. Design patterns are subjective constructions that meet the
requirements of specific business process scenarios.

Purpose of the Document
The purpose of this document is to describe business collaboration design
patterns that are applications of the e-business collaboration modeling
metamodel.

Intended Audience
This document is written for business process modelers who reuse design
patterns during model construction and for system implementers that need to
understand how these design patterns are implemented.

Prerequisites
It is assumed that the audience is familiar with or has knowledge of the following
technologies, techniques and documents:

§ Business process modeling techniques and principles

§ The Unified Modeling Language (UML) syntax and semantics

§ The “E-business Collaboration Modeling Metamodel” (BCF#7)

Scope of the Document
This document includes design patterns for both business information and
business information flow representations.

Style Conventions
This document uses typographical and language conventions to convey specific
meanings.

Typographical Conventions
The use of a bold/italic font indicates a UML or business collaboration metamodel
entity name.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page iii of iii

Language Conventions
This specification adopts the conventions expressed in the IETF’s1 RFC 2119
“Key Words for Use in RFCs to Indicate Requirement Levels.” The key words
“MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119.

Authors
Arthur Greef, Gary Ham, Jim Clark, John Yunker, Mark Smith, and Tony Weida.

Acknowledgments
Edifecs2: Edifecs is administering the creation of the Business Collaboration
Framework (BCF). The BCF is a collection of documents that prescribe the
policy, architecture and specifications for executing business collaborations for e -
business.

Contacts
Jim Clark—Edifecs Business Collaboration Services (BCS) Director of Industry
Solutions

JamesC@edifecs.com

Tony Weida—Edifecs BCS Enterprise Architect

weida@edifecs.com

Copyright
©2000 Edifecs. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. Printed in the United States of
America.

1 http://www.ietf.org/
2 http://www.edifecs.com/

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 1of 73

1 Introduction
The e-business collaboration modeling metamodel provides a language and
grammar for constructing business collaboration models. Design patterns are
applications of the metamodel to common business process representations.
Representations capture common structure and semantics applicable to specific
business process domains.

This document describes the following design patterns:

1. Business information structure:

a. Reference design pattern—used to reference business information
descriptions to describe aggregate business information containers.

b. Query/Response business document design pattern—used for both
querying business information and for specifying the structure of the
response.

c. Disjunction design pattern—used for representing business information
entities that contain one or more of a disjunctive entity.

d. Reification design pattern—used for representing common business
information entities.

e. UML/XML DTD translation design pattern—used for translating UML
business document models into XML DTD document schema.

f. Business document design pattern—used for exchanging messages that
can be interpreted as “legal writings” with respect to commercial law.

g. Request/Response business document design pattern—used for
requesting complex query results and for specifying the structure of the
response.

2. Business information flow:

a. Commercial transaction diagram design pattern—used for specifying
commercial transactions using the UML activity diagram notation.

b. Business collaboration protocol design pattern—used for specifying
business collaborations using the UML activity diagram notation.

c. Network component interaction diagram design pattern—used for
specifying network component interactions using the UML sequence
diagram notation.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 2of 73

2 Business
Information
Structure
Design
Patterns

2.1 The Reference Design Pattern
Business entity containers can reference themselves and other entities by
explicitly modeling the reference association as an entity with association
properties. As shown in Figure 2.1, the reference association (SubComponent)
should minimally contain cardinality properties and a name that has a semantic
definition specifying the relationship between the related entities. This design
pattern is useful for reusing common sub-entity representations between
multiple entity containers.

Figure 2.1 shows a Component entity containing zero or more SubComponent
entities that contain a reference to the same Component entity. Entities cannot be
self-referencing via a UML association directly i.e. the client and supplier of a
UML association cannot be the same. The UML association between the
SubComponent and Composite entities must be unidirectional.

Component
<<DataEntity>>

Cardinality
<<FundamentalDataEntity>>

GlobalSemanticCode
<<FundamentalDataEntity>>

SubComponent
<<DataEntity>>

0..* 0..*

1 1
1 +atLeast 1

1 +atMost 1

1 1

Figure 2.1 A Reference Relationship between Entities

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 3of 73

Figure 2.2 illustrates the use of parenthesis in a message guideline document to
specify a reference from one entity to another. The supplier of the UML
association is enclosed in parenthesis.

Component
0..* SubComponent
1 (Component)
1 atLeast.Cardinality
1 atMost.Cardinality
1 GlobalSemanticCode

Figure 2.2 Illustration Showing Referenced Entity in Parenthesis

The XML document schema for this design pattern is shown in Example 2.1. The
Component element either comprises SubComponent sub-elements or it
comprises the Association sub-element. The Component element also has an
implied ID attribute that is only necessary when it is the target of a reference
attribute value.

<!ELEMENT Component ((SubComponent*) |
Association) >

<!ATTLIST Component
id ID #IMPLIED >

<!ELEMENT SubComponent (Component,
atMost,
atLeast,
GlobalSemanticCode) >

<!ELEMENT atMost (Cardinality) >
<!ELEMENT atLeast (Cardinality) >
<!ELEMENT GlobalSemanticCode (PCDATA) >
<!ELEMENT Cardinality (PCDATA) >
<!ELEMENT Association EMPTY >
<!ATTLIST Association

reference IDREF #REQUIRED>

Example 2.1 Document Schema for Reference Design Pattern

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 4of 73

The SubComponent element contains a Component sub-element as its content
along with the cardinality and semantic properties. The design does not permit a
reference attribute to be specified for the SubComponent element, as the “type”
of the reference is then lost. Specifying the Component as a sub-element of
SubComponent and then allowing Association to be a sub-element of Component is
one method of retaining the “type” of the association allowing better type-
checking and a better method for specifying the meaning of the SubComponent
entity.

Example 2.2 illustrates the use of the design pattern for creating XML document
instances that comply with the DTD fragment in Example 2.1. You will notice
that the DTD permits other valid document instance construction, for example,
the Component element with id “PartA” could contain the Association sub-element
and the Component sub-element of SubComponent could have an “id” association.
Both of these document instance fragments would, however, have no meaning
with respect to the entity model in Figure 2.1 and the guideline in Figure 2.2

<Component id=‘partA’>
<!– properties go here -->

</Component>

<Component>
<SubComponent>

<Component>
<Association reference=‘partA’ />

</Component>
<atLeast>

<Cardinality>1</Cardinality>
</atLeast>
<atMost>

<Cardinality>5</Cardinality>
</atMost>
<GlobalSemanticCode>Requires</GlobalSemanticCode>

</SubComponent>
<Component>

Example 2.2 Valid Reference Design Pattern Document Instance

This design specification holds when there is no requirement of a DTD to
completely validate a document instance as in the Business Collaboration
Framework. Documents must be valid with respect to a guideline that may
contain business rules that constrain the structure and content of a document in
a specific business process context.

Applications must ensure that the graph described by the ID-IDREF pairs do not
recurse infinitely. A reference attribute value should therefore not equal the id
attribute value of a containing Component element.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 5of 73

2.2 Query/Response Business Document Design
Pattern

The query/response design pattern is useful for both querying business
information and for specifying the structure of the response to the query. There
are a number of approaches to designing query/response business documents:

1. The query and response are modeled as individual documents with fixed,
independent structure.

2. The query is modeled as a constraint on a fixed structure that is used to
return the response.

3. The query can be modeled as a constrained “template” that must be
“completed” by a responding business partner.

The first approach is typical of Electronic Data Interchange (EDI) query/response
message specifications. The second approach is typical of Structured Query
Language (SQL) message specifications and the third approach is typical of
symbolic programming languages3 that implement unification. The BCF provides a
design pattern for the third approach to query/response messages, as it is the
most flexible approach to query/response message design where the query and
response messages permit unlimited canonical data structures. The first two do
not require a design pattern, as they are no different from standard business
document specifications and are thus do not need a pattern.

3 LISP, Prolog, etc.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 6of 73

Figure 2.3 illustrates a query/response data entity model. A product information
query comprises zero or more query constraints and one product description. A
product information response comprises zero (no results in query) or more
product descriptions that match the query. A query constraint is an Object
Constraint Language4 (OCL) expression that restrains the results returned in the
query.

FreeFormText
<<FundamentalDataEntity>>

ProductInformationResponse
<<BusinessDocument>>

GlobalProductIdentifier
<<FundamentalDataEntity>>

QueryConstraint
<<FundamentalDataEntity>>

ProductInformationQuery
<<BusinessDocument>>

0..*

MonetaryAmount
<<FundamentalDataEntity>>

GlobalCurrencyCode
<<FundamentalDataEntity>>

ProductDescription
<<DataEntity>>

0..1

+productName
0..*

0..1

1

FinancialAmount
<<DataEntity>>

1 1

1 1

0..1

0..*

1

0..*
0..1

0..1 0..1

Figure 2.3 Query/Response Data Entity Model

Specifying a template for the query results and placing constraints on the
template by either filling in some of the template content or by confining the
content of the template using query constraints produces a product information
query. Filling in the template in accordance with the already specified content
and the constraints produces a product information response.

4 Refer to http://www.omg.org for standard specification.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 7of 73

The XML document schema for this design pattern is shown in Example 2.3. The
product description structure is used for both the query and response business
documents. The template for the query is created from the product description
schema.

<!ELEMENT ProductInformationQuery (QueryConstraint*,
ProductDescription) >

<!ELEMENT ProductInformationResponse (ProductDescription *) >
<!ELEMENT QueryConstraint (PCDATA) >
<!ELEMENT ProductDescription (productName?,

GlobalProductIdentifier?,
FinancialAmount?) >

<!ELEMENT productName (FreeFormText) >
<!ELEMENT FreeFormText (PCDATA) >
<!ELEMENT GlobalProductIdentifier (PCDATA) >
<!ELEMENT FinancialAmount (MonetaryAmount,

GlobalCurrencyCode) >
<!ELEMENT MonetaryAmount (PCDATA) >
<!ELEMENT GlobalCurrencyCode (PCDATA) >

Example 2.3 Query/Response Document Schema

An example product information query is shown in Example 2.4. Information on
a product with the name “aName” is requested if the price of the product is less
than (%lt;) 500 monetary units of any currency. The template requests the global
product identifier, monetary amount and global currency code to be returned in
the response.

<ProductInformationQuery>
<QueryConstraint>

ProductDescription.FinancialAmount.MonetaryAmount %lt; 500
</QueryConstraint>
<ProductDescription>

<ProductName>aName</ProductName>
<GlobalProductIdentifier></GlobalProductIdentifier>
<FinancialAmount>

<MonetaryAmount></MonetaryAmount>
<GlobalCurrencyCode></GlobalCurrencyCode>

</FinancialAmount>
</ProductDescription>

</ProductInformationQuery>

Example 2.4 An Example Product Information Query

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 8of 73

An example product information query response is shown in Example 2.5. The
result of the query returns two product descriptions with their product
identifiers and costs.

<ProductInformationResponse>
<ProductDescription>

<ProductName>aName</ProductName>
<GlobalProductIdentifier>3456789093</GlobalProductIdentifier>
<FinancialAmount>

<MonetaryAmount>100</MonetaryAmount>
<GlobalCurrencyCode>USD</GlobalCurrencyCode>

</FinancialAmount>
</ProductDescription>

<ProductDescription>
<ProductName>aName</ProductName>
<GlobalProductIdentifier>123456890</GlobalProductIdentifier>
<FinancialAmount>

<MonetaryAmount>50</MonetaryAmount>
<GlobalCurrencyCode>SF</GlobalCurrencyCode>

</FinancialAmount>
</ProductDescription>

</ProductInformationResponse>

Example 2.5 An Example Product Information Query Response

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 9of 73

2.3 Disjunction Design Pattern
The disjunction design pattern is useful for representing business information
entities that contain one or more of a number of disjunctive entities (the pattern
is also useful to inherit common data properties). This pattern is not necessary
for representations of zero or more of a number of disjunctive entities. Figure
2.4 illustrates a model that employs a disjunctive design pattern.

Quantity
<<DataEntity>>

Magnitude
<<FundamentalDataEntity>>

1

Quality
<<DataEntity>>

Value
<<FundamentalDataEntity>>

1

ComponentTechnicalSpecification
<<DataEntity>>

1 1

Specification
<<DataEntity>> 1..* 1..*

GlobalSpecificationNameCode
<<FundamentalDataEntity>>

1 1

Figure 2.4 Disjunctive Data Entity Model

A component technical specification contains one or more specifications that are
either quantities or qualities. Other representations of this specification allow
either zero or more or two or more specification properties; none of which
meet the requirements of one or more specifications. Note that the specification
data entity in Figure 2.4 is abstract (italicized class name). This prevents the data
entity from being used as an object.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 10of 73

Figure 2.5 illustrates how the representation is shown in a message guideline
document. The Choice node in the hierarchy shows the cardinality of one or
more and the choice (disjunctive) nodes do not show any cardinality. The
inherited GlobalSpecificationNameCode is repeated for each concrete class in the
data entity model.

ComponentTechnicalSpecification
1..* Choice

Quantity
1 Magnitude
1 GlobalSpecificationNameCode

Quality
1 Value
1 GlobalSpecificationNameCode

Figure 2.5 Disjunction Illustrated in a Message Guideline

The XML document schema for this design pattern is shown in Example 2.6.

<!ELEMENT ComponentTechicalSpecification (Quantity |
Quality)+ >

<!ELEMENT Quantity (Magnitude,
GlobalSpecificationNameCode) >

<!ELEMENT Quality (Value,
GlobalSpecificationNameCode) >

<!ELEMENT Magnitude (PCDATA) >
<!ELEMENT Value (PCDATA) >
<!ELEMENT GlobalSpecificationNameCode (PCDATA) >

Example 2.6 Disjunction Design Pattern Document Schema

A compliant XML document can provide one or more occurrences of the
quantity or quality specification properties.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 11of 73

2.4 Reification Design Pattern
The reification design pattern is useful for representing common business
information entities that share a common design pattern but are verbose in their
representation. Figure 2.6 illustrates an entity model for representing a
manufacturer name and a product name.

Product
<<DataEntity>>

ProductName
<<DataEntity>>

1

GlobalLanguageCode
<<FundamentalDataEntity>>

1

ManufacturerName
<<DataEntity>>

1

1

FreeFormText
<<FundamentalDataEntity>>

1

1 1

1

1

1

1

1

Figure 2.6 Illustration of a Free Form Text Entity

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 12of 73

Each “name” entity contains a free form text entity and a global language code. It
is very verbose to specify these entities and relationships for each “name” entity
in a large entity model. Figure 2.7 illustrates how the ManufacturerName and the
ProductName entities can be reified to property names if a design pattern always
emits a global language code requirement for each free form text requirement.

Product

<<DataEntity>>

FreeFormText
<<FundamentalDataEntity>>

1 1

1 1

+manufacturerName

+productName

Figure 2.7 Illustration of Reified Data Entities

The XML document schema for this design pattern is shown in Example 2.7.

The xml:lang attribute is added to each free form text element. Example 2.7
illustrates the xml:lang attribute as CDATA and not as an enumerated option list
as this could lead to very large files.

<!ELEMENT Product (manufacturerName,
productName) >

<!ELEMENT manufacturerName (FreeFormText) >
<!ELEMENT productName (FreeFormText) >
<!ELEMENT FreeFormText (PCDATA) >
<!ATTLIST FreeFormText

xml:lang CDATA #REQUIRED >

Example 2.7 Reification Document Schema

The BCF uses this design pattern to reify the language code for free form text
and the physical unit of measure code for each quantitative data entity.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 13of 73

2.5 UML/XML Translation Design Pattern
The UML/XML DTD design pattern is useful for translating UML business
document models into XML DTD document schema. It can be confusing,
however, when the cardinality of data entities in a message guideline do not
concur with the cardinality of XML DTD elements in a document schema. The
reason for this discrepancy is that all the elements in a DTD are globally scoped.
XML technology does provide tag syntax for namespace declaration but this can
become verbose with deep element nesting. The design pattern thus chosen for
UML to XML DTD conversion renders a DTD inadequate for validating a
message with respect to a message guideline. Applications are therefore required
to validate messages with respect to a guideline and not only with respect to a
DTD.

Figure 2.8 illustrates an example data entity model where a Document entity
comprises a fromBusiness and toBusiness declaration and a Business comprises
zero or one Address entity.

Address
<<DataEntity>>

Document
<<DataEntity>>

BusinessDescription
<<DataEntity>>

0..1

1

1

+toBusiness

+fromBusiness

1

1 0..1

Figure 2.8 Illustration of a Data Entity Model

The UML model in Figure 2.8 is a “network” model in that nodes in the network
are interrelated in a network of associations. A message guideline, however, is a
canonical hierarchy where each node in unique even though it is prototyped on a
node in the UML network model. The algorithm to covert the network to a
canonical hierarchy produces a graph shown in Figure 2.9 where each node in
the graph is dependant on a prototypical node in the network.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 14of 73

The graph is a guideline that is modified to accurately represent the business
data requirements. For example, Figure 2.9 illustrates that the toBusiness
declaration of a BusinessDescription is not required to contain an Address (it needs
to contain at least one Fundamental Data Entity but for the purposes of this
illustration it is not necessary to show this). The fromBusiness declaration of a
BusinessDescription is, however, required to contain an Address.

BusinessDescription.2

Document.1

1

BusinessDescription.4
1

Address.3
1 1

1

1

+toBusiness

+fromBusiness

Document
<<DataEntity>>

prototype
BusinessDescription

<<DataEntity>>

BusinessDescription
<<DataEntity>>

Address
<<DataEntity>> prototype

prototype

prototype

Figure 2.9 Illustration of a Canonical Hierarchy

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 15of 73

The design of an algorithm that creates an XML DTD from the graph in Figure
2.9 needs to account for this conditional composition of the BusinessDescription
node. It is possible to create an extremely large DTD where each node of the
DTD is labeled with the name of the prototypical UML class and the unique
identifier of the instance necessary to provide unique identity with respect to the
nodes in a canonical hierarchy. The BCF design, however, does not take this
route, as there is no requirement for complete message validation with respect
to a DTD. Instead, a DTD as shown in Example 2.8, is produced by the UML to
XML DTD algorithm.

<!ELEMENT Document (fromBusiness,
toBusiness) >

<!ELEMENT fromBusiness (BusinessDescription) >
<!ELEMENT toBusiness (BusinessDescription) >
<!ELEMENT BusinessDescription (Address?) >
<!ELEMENT Address … >

Example 2.8 Document Schema Example

The BusinessDescription element in Example 2.8 specifies the Address sub-element
as optional that seems in disagreement with the specification in Figure 2.9. What
is more, the DTD permits zero sub-elements for BusinessDescription when
provided as a sub-element to toBusiness and it permits one sub-element for
BusinessDescription when provided as a sub-element to fromBusiness, both of
which will be in disagreement with the graph specification in Figure 2.9.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 16of 73

2.6 Business Document Design Pattern
The following information is required in all business documents:

§ Each business document must contain information that identifies the role,
partner and business that is sending the business document. Each business
document must also contain information that identifies the role, partner and
business description that the document is going to. This information is similar
to the information contained in the letterhead of a business document. Only
the business identifier needs to be in the document as the identifier is the
electronic equivalent of an address. Example 2.9 illustrates the role
descriptions in a business document.

1 From Role. Partner Role Description
1 |-- Global Partner Role Classification Code
1 |-- Partner Description
1 | |-- Global Partner Classification Code
1 | |-- Business Description
1 | | |-- Global Business Identifier
1 To Role. Partner Role Description
1 |-- Global Partner Role Classification Code
1 |-- Partner Description
1 | |-- Global Partner Classification Code
1 | |-- Business Description
1 | | |-- Global Business Identifier

Example 2.9 Role Specification in a Business Document

§ The contact information of the initiating role must be included in the
business document. The responding partner will be obligated to contact the
initiating partner if there are errors in the received business document and a
response (business signal or business document) cannot be delivered to the
initiating partner, or there is no response specified. Example 2.10 illustrates
the contact information in a business document.

1 From Role. Partner Role Description
1 |-- Contact Information
1 | |-- Email Address
1 | |-- Telephone Number. Communications Number
1 | |-- Contact Name. Free Form Text

Example 2.10 Contact Information in a Business Document

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 17of 73

§ The partner type, role type and supply chain code must be included as most
conditional composition constraints are predicated on this information.
Example 2.11 illustrates supply chain specification in a business document.

1 From Role. Partner Role Description
1 |-- Global Partner Role Classification Code
1 |-- Partner Description
1 | |-- Business Description
1 | | |-- Global Supply Chain Code
1 To Role. Partner Role Description
1 |-- Global Partner Role Classification Code
1 |-- Partner Description
1 | |-- Global Partner Classification Code
1 | |-- Business Description
1 | | |-- Global Supply Chain Code

Example 2.11 Supply Chain Specification in a Supply Chain

§ Each document has an identifier. Each responding document must include the
identifier of a requesting document. This allows documents to be tracked and
reconciled. Example 2.12 illustrates the specification of a document identifier
in a business document.

1 This Document Identifier. Proprietary Document Identifier
1 |-- Administered By. Business Description
1 |-- Document Identifier. Free Form Text
0..1 Requesting Document Identifier. Proprietary Document Identifier
1 |-- Administered By. Business Description
1 |-- Document Identifier. Free Form Text

Example 2.12 Document Identifier in a Business Document

§ Each document must have a time and date stamp for auditing control. The
date and time stamp is also used for legal purposes. Example 2.13 illustrates
the specification of a data and time stamp in a business document.

1 Document Generation Date Time. Date Time Stamp
1 |-- Time Stamp
1 |-- Date Stamp

Example 2.13 Data and Time Stamp in a Business Document

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 18of 73

2.7 Request/Response Business Document Design
Pattern

The request/response design pattern is useful for requesting a business partner
to perform a business action and return a response that meets given constraints.
This design pattern differs from the query/response design pattern in two
respects:

1. Semantically, a query/response transaction specifies an initiator’s request for
information that the responder possesses. A request/response transaction,
however, asks the responder to perform an action and return a result of the
action. This is an algorithmic response base on a prescriptive request.

2. Syntactically, a “Request” business document design pattern can comprise
business rules that apply to the aggregation of the results in a response.
Business applications responding to a request need to perform an additional
processing step to apply these business rules to all the results of a query and
not to each result of a query.

Figure 2.10 illustrates a request/response data entity model. A product
availability request comprises zero or more query constraints, one or more
business constraints and zero or more product descriptions. The query
constraints are restrictions that must be met by each result returned in the
response. The business constraints are the tests that must be met by the entire
response. Consider, for example, an initiator’s product availability request for a
maximum of 100 products of a particular type. The request for 100 products is a
business constraint as the sum of all the product availability results must not be
greater than 100. The type of product is a query constraint as each result must
be the availability for the particular product type. A responding business partner
may have less than 100 products and the partner may have more than 100
products in each of a number of locations. Therefore the responding business
partner is required to perform a business action that includes reasoning about
how they will respond to such a request for availability. This may require some
planning or optimization algorithm to provide the response.

A product availability response comprises zero or more product availability
results that match both the query constraint and the business constraint. A
query constraint is an Object Constraint Language5 (OCL) expression that
constraints each result returned in the response. A business constraint is an
OCL expression that constraints the response.

Specifying a template for the response results and placing constraints on the
template by either filling in some of the template content or by constraining the
content of the template using query constraints produces a product availability
query. Filling in the template in accordance with the already specified content,
the query constraints and the business constraints produces a product availability
response.

5 Refer to http://www.omg.org for standard specification.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 19of 73

GlobalProductIdentifier
<<FundamentalDataEntity>>

BusinessConstraint
<<FundamentalDataEntity>>

QueryConstraint
<<FundamentalDataEntity>>

ProductAvailabilityRequest
<<BusinessDocument>>

1..n 1..n

1 1

ProductAvailabilityResponse
<<BusinessDocument>>

Quantity
<<FundamentalDataEntity>>

ProductDescription
<<DataEntity>>

1 1

GlobalBusinessIdentifier
<<FundamentalDataEntity>>

ProductAvailability
<<DataEntity>>

1 1

0..n 0..n

1 1 0..1 0..1

0..1 0..1
+location

Figure 2.10 Request/Response Data Entity Model

The XML document schema for this design pattern is shown in Example 2.14.
The product availability structure is used for both the request and response
business documents. The template for the request is created from the product
availability schema.

<!ELEMENT ProductAvailabilityRequest (BusinessConstraint+,
QueryConstraint*,
ProductAvailability) >

<!ELEMENT ProductAvailabilityResponse (ProductAvailability *) >
<!ELEMENT QueryConstraint (PCDATA) >
<!Element BusinessContraint (PCDATA) >
<!Element ProductAvailability (ProductDescription,

Quantity?,
GlobalBusinessIdentifier?) >

<!ELEMENT ProductDescription (GlobalProductIdentifier) >
<!ELEMENT GlobalProductIdentifier (PCDATA) >
<!ELEMENT Quantity (PCDATA) >

Example 2.14 Request/Response Document Schema

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 20of 73

An example product availability request is shown in Example 2.15. Availability on
a product with the designated global product identifier is requested. The
template requests the global product identifier, availability and locations to be
returned in the response.

<ProductAvailabilityRequest>
<QueryConstraint>

ProductAvailability.ProductDescription.GlobalProductIdentifier = 123456789
</QueryConstraint>
<BusinessConstraint>

(this->collect(ProductAvailability.Quantity))->sum <= 100
</BusinessConstraint>
<ProductAvailability>

<ProductDescription>
<GlobalProductIdentifier></GlobalProductIdentifier>

</ProductDescription>
<Quantity></Quantity>
<Location></Location>

</ProductAvailability>
</ProductAvailabilityRequest>

Example 2.15 Product Availability Request Example

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 21of 73

An example product availability request response is shown in Example 2.16. The
response to the request returns two product availability results, their product
identifiers and the location at which they are available. Note that the total
number of available products is 100 and that the number of available products at
each location is less than 1006.

<ProductAvailabilityResponse>
<ProductAvailability>

<ProductDescription>
<GlobalProductIdentifier>123456789</GlobalProductIdentifier>

</ProductDescription>
<Quantity>40</Quantity>
<location>

<GlobalBusinessIdentifier>987654321</GlobalBusinessIdentifier>
</location>

</ProductAvailability>

<ProductAvailability>
<ProductDescription>

<GlobalProductIdentifier>123456789</GlobalProductIdentifier>
</ProductDescription>
<Quantity>60</Quantity>
<location>

<GlobalBusinessIdentifier>654987321</GlobalBusinessIdentifier>
</location>

</ProductAvailability>
</ProductAvailabilityResponse>

Example 2.16 Product Availability Response Example

6 A query/response design pattern cannot express this requirement.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 22of 73

3 Business
Information
Flow Design
Patterns

3.1 Commercial Transaction Design Pattern
A commercial transaction specifies the contract formation process between two
business partners. A contract is used to legally bind parties to a clearly stated
intention (promise, obligation) and defines the responsibilities of each party. A
contract usually outlines what each party can do in the event the intended
actions are not carried out (promised services not rendered, services rendered
but payment not issued). Prudent parties execute (sign) contracts prior to
carrying out the intended actions, to limit their liability and to protect their
interests.

There are many types of commercial contract formation processes. For example,
an “offer-and-acceptance” contract is formed when a product order is
“accepted” by a vendor. An “accepted” (signed, mutually agreed upon) purchase
order forms a contract between buyer and seller to provide a quantity of
product at an agreed-upon price. After the contract is formed, the buyer
provides the product and the seller pays for the product. In the event
something goes wrong, the buyer and seller both have recourse as described in
the contract.

Another example of contract formation occurs when a claim has been accepted
for payment; this is a “contract” to perform the issuance of monetary payment
(or another form of credit) some time after the “acceptance” (contract
formation) of the claim.

The BCF treats all commercial transactions as contract forming processes in that
there is always an obligation (perhaps not residual) between each of the parties
participating in the transaction.

The UML activity diagram notation is used to graphically specify these
commercial transactions as design patterns. The pattern for specifying and
interpreting these diagrams and the textual notation used to specify element
names as well as conditional expressions is provided in this section.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 23of 73

Figure 3.1 illustrates a commercial transaction specification that does not include
a responding business document and Figure 3.2 illustrates a commercial
transaction specification that includes a responding business document.

Document
Request

:RequestingRole :RespondingRole

<<Stereotype>>
Responding Business Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<Stereotype>>
Requesting Business Activity

Figure 3.1 Commercial Transaction without Responding
Business Document

It is recommended that all commercial transaction specifications use the layout
illustrated in these figures. This will provide a consistent method of
communicating commercial transactions.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 24of 73

Document
Request

Document
Response

:RequestingRole :RespondingRole

<<Stereotype>>
Responding Business Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

CONTRACT
FAILED

[CONTRACTFAIL]

<<Stereotype>>
Requesting Business Activity

Figure 3.2 Commercial Transaction with Responding Business
Document

3.1.1 Commercial Transaction State Semantics
The initial (START) state and the Final (END, CONTROLFAILED,
CONTRACTFAILED) state represent the state of a commercial transaction and
not the state of any role that participates in the transaction. It is "by convention"
that the initial and final states are placed into the requester’s swim lane. This has
no semantic meaning with respect to any participating role. These states could
be anywhere in the activity graph as they still pertain to the entire transaction
and not to any particular role. The start state and final state conditions should
therefore specify conditions that must hold before the commercial transaction
can transition into the "default" state (a UML definition).

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 25of 73

3.1.1.1 START STATE SEMANTICS

The condition that must hold, before transitioning into the initiating transaction
activity, should test the following (note that a trading partner agreement (TPA)
contains the transaction specifications agreed to by participating partners):

1. The ability of each employee/organization to fulfill their obligations with
respect to a TPA, e.g.:

a. Are the roles approved trading partners, i.e. does a TPA exist that
governs the terms and conditions of the transaction?

b. Does each of the participating roles meet the criterion required for
performing the activity, e.g. is the employee/organization performing the
role authorized to perform the role if authorization is required?

c. Is a business document non-repudiated if required in a TPA?

d. Are all data entities tamper-proof, confidential and authenticated as
required in a TPA?

2. If a business record exists and it is also syntactically and structurally
formatted with respect to the agreed message guideline in a TPA.

3.1.1.2 START STATE NOTATION

Note that the START conditions are actually guard conditions on the transition
from the initial state to the initiating activity in the activity graph. There is no
pseudo state "condition" in the UML metamodel. These conditions are not,
however, specified as guards in the transaction diagram to improve readability.

It is preferred that these conditions are captured using the following syntax. This
improves consistency and will facilitate the translation of these conditions to
OCL at a later stage.

States conditions are named in the form <Noun><Property>(<Verb>or<Code>)

§ The <Noun> can be a Business Data Entity and the property is named
"Status" in the form BDE Status <Code >. For example, Purchase Order
Status Open.

§ The <Noun> can be a Business Document with no named property in the
form <Noun> <Verb>. For example, Purchase Order Exists.

§ The <Property> can be the name of a business process support system with
no <Noun> in the form <Property><Verb>. For example, Buyer Authorized.

Use the following notation to specify the START conditions:

§ TPA Exists

§ Requesting Partner Approved

§ Responding Partner Approved

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 26of 73

§ <Business Document> Status <Code> etc. The values for this can be found
in the business dictionary (just search for *StatusCode in the Entity Instances
table). Make sure only valid status is used from the dictionary or another
valid status must be added to the dictionary, e.g. Purchase Order Status
Revoked.

§ <Requesting Role> Authorized, e.g. Buyer Authorized

§ <Business Document> Exists, e.g. Purchase Order Exists

§ <Business Document> Non-Repudiated

§ <Business Document> Valid

§ <Business Document> <Property> Tamper-Proof

§ <Business Document> <Property> Confidential

§ <Business Document> <Property> Authenticated

3.1.1.3 END, CONTROLFAILED AND CONTRACTFAILED STATE
SEMANTICS

The state of the commercial transaction transitions into the END state if both
parties in a commercial transaction meet the conditions agreed to in their TPA.
There are two final states specified for commercial transactions:

1. Contract Failure—The state machine must transition into the
CONTRACTFAILED state if the intended commercial contract is not formed
but none of the control conditions are violated. For example, a responding
role may return a negative business acceptance document that contains a
status BDE whose value is “Reject.” In these cases a test on the BDE status
for reject must transition the state machine into the CONTRACTFAILED
state. The contract failure end state must only be used for commercial
transactions that permit negative ACKNOWLEDGMENTs. In these instances
the commercial transaction activity graph is shown in Figure 3.2. If there is no
contract failure condition then the transaction activity graph is shown in
Figure 3.3.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 27of 73

Document
Request

Document
Response

:RequestingRole :RespondingRole

<<Stereotype>>
Responding Business Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<Stereotype>>
Requesting Business Activity

Figure 3.3 Commercial Transaction with No Contract Failure
State

2. Control Failure—The state machine must transition into the
CONTROLFAILED state if any business collaboration control parameter is
violated, for example, time outs, processing exceptions, non-repudiation and
authorization exceptions. In these cases both the transaction fails and the
contract is not formed.

The conditions that must hold before transitioning into the SUCCESS state
should test the following (note that a TPA contains the transaction specifications
agreed to by participating partners):

1. Each employee/organization has fulfilled their obligations with respect to a
TPA, e.g.:

a. Have each of the participating roles met the criterion required for
performing the activity e.g. were the employee/organization performing
the roles authorized to perform the role if authorization is required?

b. Is a business document non-repudiated if required in a TPA?

c. Are all data entities in the responding document tamper-proof,
confidential and authenticated as required in a TPA?

d. Were all documents and business signals received by both parties as
agreed to in the TPA?

2. If a business record exists and it is also syntactically and structurally
formatted with respect to the agreed message guideline specified in a TPA.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 28of 73

3. The retry count has not exceeded the maximum specified.

4. The state machine transitions to the CONTRACTFAILED state if the
conditions to transition to the END state are not met and/or a condition on
a negative response is satisfied. It is redundant to re-specify the negation of
all of the SUCCESS conditions in the FAILED state conditions. Therefore, the
following are the only conditions necessary for the CONTRACTFAILED
conditions:

§ SUCCESS and (<BDE> Status <Code > and/or …)

5. The state machine transitions to the CONTROLFAILED state if the
conditions to transition to the END state and CONTRACTFAILED states
are not met. It is redundant to re-specify the negation of all of the SUCCESS
and CONTRACTFAILED conditions in the CONTROLFAILED state
conditions. Therefore, the following are the only conditions necessary for the
CONTROLFAILED conditions:

§ Not SUCCESS or Not CONTRACTFAIL

3.1.1.4 END STATE NOTATION

Note that the END conditions are actually guard conditions on the transition
from the end status in the activity graph. There is no pseudo state "condition" in
the UML metamodel. These conditions are not, however, enumerated as guards
in the transaction diagram to improve readability. It is preferred that these
conditions are captured using the following syntax. This improves consistency
and will facilitate the translation of these conditions to OCL at a later stage.

States conditions are named in the form <Noun><Property>(<Verb>|<Code>):

§ The <Noun> can be a Business Data Entity and the property is named
"Status" in the form BDE Status <Code>, such as Purchase Order Status
Open.

§ The <Noun> can be a Business Document with no named property in the
form <Noun> <verb>, such as Purchase Order Acceptance Exists.

§ The <Property> can be the name of a business process support system with
no <Noun> in the form <Property><Verb>, such as Seller Authorized,
Receipt Non-Repudiated.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 29of 73

Use the following notation to specify the END conditions:

§ <Business Document> Status <Code> etc. The values for this can be found
in the business dictionary (just search for *StatusCode in the Entity Instances
table). Make sure only valid status from the dictionary is used or another
valid status is added to the dictionary, e.g. Purchase Order Acceptance Status
Approved.

§ <Responding Role> Authorized, e.g. Seller Authorized

§ <Business Document> Exists, e.g. Purchase Order Acceptance Exists

§ <Business Signal> Exists, e.g. Verification of Receipt Exists

§ <Business Document> Non-Repudiated

§ Verification of Receipt Non-Repudiated

§ <Business Document> Valid

§ <Business Signal> Valid

§ <Business Document> <Property> Tamper-Proof

§ <Business Document> <Property> Confidential

§ <Business Document> <Property> Authenticated

3.1.2 Commercial Transaction Design Rationale
This section provides the design rationale for the time-out specification in each
commercial transaction design pattern. This design rationale is presented within
a document-processing framework that comprises the following steps:

1. Grammar validation—Task of verifying that the grammar of a message is
valid (usually only the header of the message at this step).

2. Sequence validation—Task of verifying that the collaboration control
information is valid with respect to the commercial transaction specification.

3. Schema validation—Task of verifying that the message schema is valid
with respect to a message guideline agreed to by both partners. It is
recommended that message receipt be acknowledged after this validation
step to ensure that documents are “readable” as well as “accessible.”

4. Content validation—Task of verifying that the content of a message is
valid with respect to any business rules that govern the formation of a
contract. It is recommended that business acceptance be acknowledged after
this validation step.

5. Activity processing—Task of processing the request in the initiating
business document.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 30of 73

Figure 3.4 illustrates the processing of an initiating message when the contract-
closing (contract acceptance document) message is an ACKNOWLEDGMENT
of receipt. The ACKNOWLEDGMENT of receipt is a business signal, i.e. it does
not map onto a business document.

Schema
Validation

Content
Validation

Sequence
Validation

Grammar
Validation

Initiating
Message Activity

Processing

Closing Message is
Acknowledgment

of Receipt Business
Signal

Figure 3.4 ACKNOWLEDGMENT of Receipt Closing Message

Table 3.1 shows an example of time-out parameters for this commercial
transaction. The Information Distribution and Notification business activity
specification (see BCF#7 document, “E-business Collaboration Modeling
Metamodel”) uses this design pattern.

Business Activity Performance Controls

ROLE
NAME

ACTIVITY
NAME T

IM
E

 T
O

A

C
K

N
O

W
L

E
D

G
E

R

E
C

E
IP

T

T
IM

E
 T

O

A
C

K
N

O
W

L
E

D
G

E

A
C

C
E

P
T

A
N

C
E

T
IM

E
 T

O

P
E

R
F

O
R

M

Role Activity 24 hrs N/A 24 hrs

Table 3.1 Time-out Parameters for ACKNOWLEDGMENT of
Receipt

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 31of 73

Figure 3.5 illustrates the processing of an initiating message when the closing
message is an ACKNOWLEDGMENT of acceptance. The acceptance message
can be either substantive or non-substantive. A substantive business acceptance
message includes business data from the initiating message e.g. product, price
and quantity in a substantive purchase order acceptance document. A substantive
business acceptance message contains a business document. A positive non-
substantive business acceptance message contains the initiating business
document identification data. A negative non-substantive business acceptance
message contains that initiating business document identification data, the reason
for rejection and a syntactic error messages indicating the business data
elements in which the error was found. A positive non-substantive acceptance
message is a business signal i.e. it does not map onto a business document. Note
the following:

1. If a substantive business acceptance is required then a responding business
document is specified in a commercial transaction.

2. If a non-substantive business acceptance is required then a responding
business document is not specified in a commercial transaction.

Schema
Validation Content

Validation Sequence
Validation

Grammar
Validation

Initiating
Business
Document Activity

Processing

Acknowledgment
of Receipt Acknowledgment

of Acceptance

Figure 3.5 ACKNOWLEDGMENT of Business Acceptance
Closing Message

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 32of 73

Table 3.2 shows example time-out parameters for this commercial agreement.
The Business Transaction Activities (see BCF#7, “E-business Collaboration
Modeling Metamodel”) use this design pattern when a substantive business
ACKNOWLEDGMENT of acceptance is required.

Business Activity Performance Controls

ROLE
NAME

ACTIVITY
NAME T

IM
E

 T
O

 A
C

K
N

O
W

L
E

D
G

E

R
E

C
E

IP
T

T
IM

E
 T

O
 A

C
K

N
O

W
L

E
D

G
E

A

C
C

E
P

T
A

N
C

E

T
IM

E
 T

O
 P

E
R

F
O

R
M

Role Activity 2 hrs 6 hrs 6 hrs

Table 3.2 Time-out Parameters for ACKNOWLEDGMENT of
Acceptance

Figure 3.6 illustrates the processing of an initiating message when the closing
message is a responding business document. The Query/Response business
activity specification (see BCF#7 document, “E-business Collaboration Modeling
Metamodel”) uses this design pattern.

Schema
Validation

Content
Validation

Sequence
Validation

Grammar
Validation

Initiating
Message Activity

Processing

Closing Message is
Responding

Business Document

Figure 3.6 Responding Business Document is Closing Message

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 33of 73

 Table 3.3 shows example of time-out parameters for this commercial
transaction.

Business Activity Performance Controls

ROLE
NAME

ACTIVITY
NAME T

IM
E

 T
O

 A
C

K
N

O
W

L
E

D
G

E

R
E

C
E

IP
T

T
IM

E
 T

O
 A

C
K

N
O

W
L

E
D

G
E

A

C
C

E
P

T
A

N
C

E

T
IM

E
 T

O
 P

E
R

F
O

R
M

Role Activity N/A N/A 24 hrs

Table 3.3 Time-out Parameters When Closing Message Is a
Business Document

It is possible to specify ACKNOWLEDGMENTs and a responding business
document as part of the commercial agreement. Figure 3.7 illustrates the
processing of an initiating message when there is a requirement for an
ACKNOWLEDGMENT of receipt, a non-substantive acknowledgment of
acceptance and a responding document. Note that the acceptance message
cannot be specified as substantive, i.e. a business document. It can only be a non-
substantive, i.e. a business signal. If the acceptance must be substantive then two
commercial transactions are required.

Schema
Validation

Content
Validation

Sequence
Validation

Grammar
Validation

Initiating
Business
Document

Activity
Processing

Responding
Business Document

Acknowledgment
of Receipt

Acknowledgment
of Acceptance

Figure 3.7 Receipt, Business Acceptance and Business Document
Response

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 34of 73

Table 3.4 shows example time-out parameters for this commercial transaction.
The Business Transaction Business Activity specification (see BCF#7, “E-business
Collaboration Modeling Metamodel”) that mandates the return of a non-
substantive business acceptance ACKNOWLEDGMENT uses this design pattern.

Business Activity Performance Controls

ROLE
NAME

ACTIVITY
NAME T

IM
E

 T
O

A

C
K

N
O

W
L

E
D

G
E

R

E
C

E
IP

T

T
IM

E
 T

O

A
C

K
N

O
W

L
E

D
G

E

A
C

C
E

P
T

A
N

C
E

T
IM

E
 T

O
 P

E
R

F
O

R
M

Role Activity 2 hrs 6 hrs 24 hrs

Table 3.4 Time-out Parameters for Receipt, Business
Acceptance and Business Document Response

Interpreting how the contact is closed using a substantive or non-substantive
ACKNOWLEDGMENT of acceptance is a based on three cues:

1. There is a value for “Time to Acknowledge Acceptance.”

2. Whether the value for “Time to Perform” is either equal or not equal to the
“Time to Acknowledge Acceptance.”

3. And whether there is or is not a business document response.

Case 1:

If

1. There is a value for “Time to Acknowledge Acceptance.”

2. The value for “Time to Perform” equals the “Time to Acknowledge
Acceptance.”

3. There is no business document response.

Then the ACKNOWLEDGMENT of acceptance is non-substantive.

Case 2:

If

1. There is a value for “Time to Acknowledge Acceptance.”

2. The value for “Time to Perform” equals the “Time to Acknowledge
Acceptance.”

3. There is a business document response with the verb acceptance appended
to a noun, e.g. Purchase Order Acceptance.

Then the ACKNOWLEDGMENT of acceptance is substantive.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 35of 73

Case 3:

If

1. There is a value for “Time to Acknowledge Acceptance.”

2. The value for “Time to Perform” does not equal the “Time to Acknowledge
Acceptance.”

3. There is a business document response.

Then the ACKNOWLEDGMENT of acceptance is non-substantive.

3.1.3 Business Transaction Design Pattern
The business transaction design pattern is illustrated in Figure 3.8.

Document
Request

Document
Response

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

CONTRACT
FAILED

[CONTRACTFAIL]

<<BusinessTransactionActivity>>
Activity

Figure 3.8 Business Transaction Activity Design Pattern

This design pattern is best used to model the “offer and acceptance” commercial
transaction process that results in a residual obligation between both parties to
fulfill the terms of the contract. The following principals and definitions of offer
and acceptance are taken from the following URL:
http://www.anu.edu.au/law/pub/edinst/anu/contract/lectures/moles/semest1/MCo
ntractFormationOfferAnd.html - MContrac-Whatisanoffer.

Offer and acceptance are a means of analyzing the process of negotiation to
decide whether and when a contract has been made and what therefore
constitute its terms.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 36of 73

There is no satisfactory definition of an offer beyond identifying it by
reference to the fact that it can be converted into a contract by an act of
acceptance. Whether it can be accepted depends upon the objective
intention of the party making the statement that is alleged to be an offer.

Making an offer exposes one to the imposition of legal liability by another. In
deciding whether statements amount to an offer, the courts are said to use
an objective test. Therefore under the objective test an apparent intention to
be bound will suffice if 2 conditions are satisfied:

§ Conduct of the alleged offerer must be such as to induce a
"reasonable person" to believe that he/she is making the
alleged offer.

§ The alleged offeree must actually hold that belief—i.e.
believe that the offerer is making a genuine offer, as
opposed, for example, to playing a game.

The pattern specifies an originating business activity sending a business document
to a responding business activity that may return a business signal or business
document as the last responding message. The pattern mandates the
ACKNOWLEDGMENT of the requesting business document when it passes a
“Business Acceptance” test, i.e. passes the content validation step in illustrated
Figure 3.7. This ACKNOWLEDGMENT can be substantive i.e. contains the
terms of acceptance of a contract or it may be non-substantive i.e. a general
auditable business signal. The intent of this commercial transaction pattern is to
model the formation of an offer and acceptance commercial contract7 (Refer to
the appendix for examples). If the requesting role transitions from their business
activity into the control failure state then the role must initiate a notification of
failure (see notification of failure design pattern) commercial transaction to
revoke their original offer.

Note that the “CONTRACTFAILED” final state can be omitted from the
commercial transaction specification if there are no negative business acceptance
documents specified.

7 Refer to the following documents to understand on-line commercial contract formation:
¦ PART 2 UNIFORM RULES OF CONDUCT FOR INTERCHANGE OF TRADE DATA BY TELETRANSMISSION

(UNCID), CHAPTER 2 - Text of the Uniform Rules of Conduct,
http://www.unece.org/trade/untdid/texts/d220_d.htm

¦ UN/ECE RECOMMENDATION No.26, THE COMMERCIAL USE OF INTERCHANGE AGREEMENTS FOR
ELECTRONIC DATA INTERCHANGE, http://www.unece.org/trade/untdid/texts/d240_d.htm

¦ The Commercial use of Electronic Data Interchange, Section of Business Law American Bar Association, A report
and model trading partner agreement, http://www.abanet.org/buslaw/catalog/5070258.html

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 37of 73

3.1.4 Query/Response Design Pattern
Figure 3.9 illustrates the query/response design pattern. The query/response
design pattern specifies one business document as output and one business
document as input. These documents adhere to the query/response business
document design pattern specified in the previous section. Query/Response does
not permit the return of auditable business signals, i.e. receipt
ACKNOWLEDGMENT or business acceptance ACKNOWLEDGMENT.

The responding activity is most likely to be serviced by an organizational role, i.e.
not by an employee role. There is no non-repudiation requirement for these
activities.

Document
Request

Document
Response

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<QueryResponseActivity>>
Activity

Figure 3.9 Query/Response Activity Design Pattern

The query/response design pattern specifies a query for information that a
responding partner already has e.g. against a fixed data set that resides in a
database. The response comprises zero or more results each of which meet the
constraining criterion in the query. For example, a query for the products under
$500 will yield any number of product results in the same response all of which
have a price under $500. This pattern should be used when the response
comprises a collection of results each of which meet the constraining criterion
specified in the query. However, the request/response design pattern should be
used instead when there are “aggregate” or “interdependent” constraints that
must be applied to a set of results.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 38of 73

3.1.5 Request/Response Design Pattern
Figure 3.10 illustrates the request/response design pattern. Note that there is
usually no residual obligation between both parties to fulfill the terms of a
contract as in the Business Transaction Activity pattern. For example, a request
for price and availability does not result in the responding party allocating
product for future purchase and it does not result in the requesting party being
obligated to purchase the products. This pattern specifies the exchange of a
requesting and responding business document. ACKNOWLEDGMENT of
business acceptance is not permitted—use the “Business Transaction Activity”
stereotype if this is required.

The responding activity is most likely serviced by organizational or employee
roles. Non-repudiation is an optional requirement for these activities.

Document
Request

Document
Response

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<RequestResponseActivity>>
Activity

Figure 3.10 Request/Response Activity Design Pattern

The request/response activity pattern must be used for commercial contracts
when initiating partner requests information that a responding partner already
has and when the request for business information requires a complex
interdependent set of results. For example, a price and availability request may
constrain the response such that the sum of all products returned in each of the
results (one response may comprise zero or more results) must be less than
100. This response requires some business processing on a query before a
response is returned to the requester. This flow pattern is used in conjunction
with the request/response business document design pattern that includes syntax
for expressing business constraints that apply to the collection of results in the
response. If there is no “aggregate” or “interdependent” constraints that must
be applied to a set of results then the query/response pattern must be used.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 39of 73

3.1.6 Request/Confirm Design Pattern
Figure 3.11 illustrates the request/confirm design pattern. Note that there is
usually no residual obligation between both parties to fulfill the terms of a
contract as in the Business Transaction Activity pattern. For example, a request
for authorization to sell certain products expects a confirmation response to the
request that confirms if the requester is authorized or not authorized to sell the
products. This pattern specifies the exchange of a requesting and responding
business document. ACKNOWLEDGMENT of receipt is expected—it is the
initiator’s obligation to follow up on the request until an ACKNOWLEDGMENT
of receipt is received. ACKNOWLEDGMENT of business acceptance is not
permitted—use the “Business Transaction Activity” stereotype if this is required.

The responding activity is most likely serviced by organizational or employee
roles. Non-repudiation is an optional requirement for these activities.

Document
Request

Document
Response

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<RequestConfirmActivity>>
Activity

Figure 3.11 Request/Response Activity Design Pattern

The request/confirm activity pattern must be used for commercial contracts
where an initiating partner requests confirmation about their status with respect
to previously established contracts or with respect to a responding partner’s
business rules.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 40of 73

3.1.7 Information Distribution Design Pattern
Figure 3.12 illustrates the information distribution design pattern. This pattern
specifies the exchange of a requesting business document and the return of an
ACKNOWLEDGMENT of receipt business signal. This pattern is used to model
an informal information exchange commercial transaction that therefore has no
non-repudiation requirements.

Document
Request

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<InformationDistributionActivity>>
Activity

Figure 3.12 Information Distribution Design Pattern

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 41of 73

3.1.8 Notification Design Pattern
Figure 3.13 illustrates the notification design pattern. This pattern specifies the
exchange of a notifying business document and the return of an
ACKNOWLEDGMENT of receipt business signal. This pattern is used to model
a formal information exchange commercial transaction that therefore has non-
repudiation requirements.

Document
Notice

:RequestingRole :RespondingRole

Activity

START

CONTROL
FAILED

[CONTROLFAIL]

END

[SUCCESS]

<<NotificationActivity>>
Activity

Figure 3.13 Notification Design Pattern

3.1.8.1 NOTIFICATION OF FAILURE SEMANTICS

The intent of the notification of failure commercial transaction is to revoke an
initial commercial contract offer if the contract formation process fails. The
requesting partner can only initiate this commercial transaction. A responding
partner is required to return an exception document or a negative
ACKNOWLEDGMENT document when an error is generated.

Notification of failure must only be initiated when a terminating transaction does
not leave both parties with a mutual agreement as to the state of a commercial
transaction. This condition exists when:

1. The originating partner’s business activity times-out when waiting for a
specified response to their requesting business document.

2. The originating partner’s responding business document is erroneous, not
authorized or not digitally signed as agreed to in a trading partner agreement.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 42of 73

The UN/EDIFACT model trading partner agreement
(http://www.unece.org/trade/untdid/texts/d240_d.htm) recommends the following
procedure be agreed to by both partners in their trading partner agreement so
as to leave each partner with a mutual understanding of when a contract is not
formed:

3.2.3. In the event that the originating party has not received, for a properly
transmitted Message, a required ACKNOWLEDGMENT and no further
instructions have been provided, the originating party may declare the
Message null and void by so notifying the receiving party.

The contract requester initiates this commercial transaction when the originating
partner times-out when waiting for a specified response. Where notifications are
sent is defined in a trading partner agreement and may be different for each
commercial transaction.

It is recommended that the Notification of Failure commercial transaction be
executed over an alternate communication channel to prevent the inability to
report failures potentially caused by communication failures. It is recommended
that the organizational entity responding to the notification of failure is different
from the organization that failed to respond to the original business document
request (“offer”).

In an e-business network environment, this “alternate communications channel”
should at least be interpreted to mean communicating with an application server
that is different from the application server that has not serviced the original
business document request. Trading partners should, however, agree on this
“alternate communications channel.”

This commercial transaction is not exercised when a responding business
partner encounters a business process or control exception when responding to
a business document request.

3.2 Business Collaboration Protocol Design Pattern
A business collaboration protocol choreographs commercial transactions. The
UML activity diagram notation is used to specify these business collaborations
protocols. The following are named design patterns:

1. Acceptance

2. Others yet to be determined

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 43of 73

3.2.1 Acceptance Business Collaboration Design Pattern
A blanket acceptance business collaboration protocol specifies the execution of a
single commercial transaction activity that either succeeds or fails. On success
the collaboration ends. On failure the commercial transaction activity transitions
to the notification of failure commercial transaction activity that is also executed
only once. The collaboration is termed a blanked acceptance to model a
commercial transaction that expects a contract to be formed upon receipt of a
single contract acceptance document. This collaboration is illustrated in Figure
3.14.

START

Check Time Slot Availability
<<CommercialTransactionActivity>>

END

Notify of Failure
<<CommercialTransactionActivity>>

[FAILURE]

[SUCCESS]

Figure 3.14 Acceptance Business Collaboration

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 44of 73

3.3 Network Component Interaction Diagram
Pattern

Networked business services and business agents are configured to execute
commercial transactions and business collaboration agreements. The UML
sequence diagram notation is used to specify network component interactions.
The following network component interactions are possible:

1. Service-Service

2. Agent-Service-Service

3. Service-Service-Agent

4. Service-Agent-Service

5. Agent-Service-Agent

3.3.1 Service-Service

Business Transaction Activity

There are three variations of the business transaction activity.

First, time to perform equals time to acknowledge acceptance and no responding
business document.

 :

OriginatingService
 :

RespondingService

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgment)

1.2. signal(AcceptanceAcknowledgment)

Figure 3.15 Service-Service Interaction Pattern—I

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 45of 73

Second, time to perform equals time to acknowledge acceptance and a
responding business document.

 :

OriginatingService
 :

RespondingService

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgment)

1.2. response(BusinessAction)

1.2.1. signal(ReceiptAcknowledgment)

Figure 3.16 Service-Service Interaction Pattern—II

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 46of 73

And third, time to perform is greater than time to acknowledge acceptance.

 :

OriginatingService
 :

RespondingService

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgment)

1.3. response(BusinessAction)

1.2. signal(AcceptanceAcknowledgment)

1.3.1. signal(ReceiptAcknowledgment)

Figure 3.17 Service-Service Interaction Pattern—III

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 47of 73

Query/Response Activity, Request/Response Activity and
Request/Confirm Activity

 :

OriginatingService
 :

RespondingService

1. request(BusinessAction)

1.2. response(BusinessAction)

1.1. signal(ReceiptAcknowledgment)

1.2.1. signal(ReceiptAcknowledgment)

Figure 3.18 Service-Service Interaction Pattern—IV

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 48of 73

Information Distribution Activity and Notification Activity

 :

OriginatingService
 :

RespondingService

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgment)

Figure 3.19 Service-Service Interaction Pattern—V

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 49of 73

3.3.2 Agent-Service-Service

Business Transaction Activity

Time to perform equals time to acknowledge acceptance and no responding
business document.

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent

1. callTxn()
1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgment)

1.1.2. signal(AcceptanceAcknowledgment)

1.2. return(BusinessSignal)

Figure 3.20 Agent-Service-Service Interaction Pattern—I

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 50of 73

Time to perform equals time to acknowledge acceptance and a responding
business document.

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent

1. callTxn()
1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgment)

1.1.2. response(BusinessAction)

1.2. return(BusinessAction)

1.1.2.1. signal(ReceiptAcknowledgment)

Figure 3.21 Agent-Service-Service Interaction Pattern—II

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 51of 73

Time to perform is greater than time to acknowledge acceptance.

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgment)

1.1.2. signal(AcceptanceAcknowledgment)

1.1.3. response(BusinessAction)

1.2. return(BusinessAction)

1.1.3.1. signal(ReceiptAcknowledgment)

Figure 3.22 Agent-Service-Service Interaction Pattern—III

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 52of 73

Query/Response Activity, Request/Response Activity and
Request/Confirm Activity

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.2. response(BusinessAction)

1.2. return(BusinessAction)

1.1.2.1. signal(ReceiptAcknowledgment)

1.1.1. signal(ReceiptAcknowledgment)

Figure 3.23 Agent-Service-Service Interaction Pattern—IV

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 53of 73

Information Distribution Activity and Notification Activity

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgment)

1.2. return(BusinessSignal)

Figure 3.24 Agent-Service-Service Interaction Pattern—V

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 54of 73

3.3.3 Service-Service-Agent

Business Transaction Activity

Time to perform equals time to acknowledge acceptance and no responding
business document.

 :

OriginatingService
 :

RespondingService
 :

RespondingAgent

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgment)

1.2. signal(AcceptanceAcknowledgment)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(AcceptanceAcknowledgment)

Figure 3.25 Service-Service-Agent Interaction Pattern—I

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 55of 73

Time to perform equals time to acknowledge acceptance and a responding
business document.

 :

OriginatingService
 :

RespondingService
 :

RespondingAgent

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgment)

1.2. response(BusinessAction)

1.2.1. signal(ReceiptAcknowledgment)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

Figure 3.26 Service-Service-Agent Interaction Pattern—II

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 56of 73

Time to perform is greater than time to acknowledge acceptance.

 :

OriginatingService
 :

RespondingService
 :

RespondingAgent

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgment)

1.2. signal(AcceptanceAcknowledgment)

1.3. response(BusinessAction)

1.3.1. signal(ReceiptAcknowledgment)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

Figure 3.27 Service-Service-Agent Interaction Pattern—III

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 57of 73

Query/Response Activity, Request/Response Activity and
Request/Confirm Activity

 :

OriginatingService
 :

RespondingService
 :

RespondingAgent

1. request(BusinessAction)

1.2. response(BusinessAction)

1.1. signal(ReceiptAcknowledgment)

1.2.1. signal(ReceiptAcknowledgment)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

Figure 3.28 Service-Service-Agent Interaction Pattern—IV

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 58of 73

Information Distribution Activity and Notification Activity

 :

OriginatingService
 :

RespondingService
 :

RespondingAgent

1. request(BusinessAction)

1.1. signal(ReceiptAcknowledgment)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(ReceiptAcknowledgment)

Figure 3.29 Service-Service-Agent Interaction Pattern—V

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 59of 73

3.3.4 Service-Agent-Service

Business Transaction Activity

Time to perform equals time to acknowledge acceptance and no responding
business document.

 :

OriginatingService
 :

RespondingService
 :

RespondingAgent
 :

OriginatingAgent

1. callTxn()

1.1. return(BusinessAction)
1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)

1.1.1.1.1. signal(ReceiptAcknowledgment)

1.1.1.1.2. signal(AcceptanceAcknowledgment)

2. queryTxn()

2.1. return(BusinessSignal)

Figure 3.30 Service-Agent-Service Interaction Pattern—I

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 60of 73

Time to perform equals time to acknowledge acceptance and a responding
business document.

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent
 :

RespondingAgent

1. callTxn()

1.1. return(BusinessAction)
1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)

1.1.1.1.1. signal(ReceiptAcknowledgment)

1.1.1.1.2. response(BusinessAction)

1.1.1.1.2.1. signal(ReceiptAcknowledgment)

2. queryTxn()

2.1. return(BusinessAction)

Figure 3.31 Service-Agent-Service Interaction Pattern—II

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 61of 73

Time to perform is greater than time to acknowledge acceptance.

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent
 :

RespondingAgent

1. callTxn()

1.1. return(BusinessAction)
1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)

1.1.1.1.1. signal(ReceiptAcknowledgment)

1.1.1.1.2. signal(AcceptanceAcknowledgment)

1.1.1.1.3. response(BusinessAction)

1.1.1.1.3.1. signal(ReceiptAcknowledgment)

2. queryTxn()

2.1. return(BusinessAction)

Figure 3.32 Service-Agent-Service Interaction Pattern—III

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 62of 73

Query/Response and Request/Response Activity

 :

RespondingService
 :

OriginatingAgent
 :

RespondingAgent

1. callTxn()

1.1. return(BusinessAction)
1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)

1.1.1.1.1. signal(ReceiptAcknowledgment)

1.1.1.1.2. response(BusinessAction)

1.1.1.1.2.1. signal(ReceiptAcknowledgment)

2. queryTxn()

2.1. return(BusinessAction)

OriginatingService
 :

Figure 3.33 Service-Agent-Service Interaction Pattern—IV

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 63of 73

Request/Confirm Activity

 :

OriginatingService
 :

OriginatingAgent
 :

RespondingAgent
 :

RespondingService

1. callTxn()

1.1. return(BusinessAction)
1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)
1.1.1.1.1. signal(ReceiptAcknowledgment)

1.1.1.1.2. response(BusinessAction)

1.1.1.1.2.1. signal(ReceiptAcknowledgment)

2. queryTxn()

2.1. return(BusinessAction)

Figure 3.34 Service-Agent-Service Interaction Pattern—V

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 64of 73

Information Distribution Activity and Notification Activity

 :

OriginatingService
 :

OriginatingAgent
 :

RespondingAgent
 :

RespondingService

1. callTxn()

1.1. return(BusinessAction)
1.1.1. transfer(BusinessAction)

1.1.1.1. request(BusinessAction)
1.1.1.1.1. signal(ReceiptAcknowledgment)

2. callTxn()

2.1. return(BusinessSignal)

Figure 3.35 Service-Agent-Service Interaction Pattern—VI

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 65of 73

3.3.5 Agent-Service-Agent

Business Transaction Activity

Time to perform equals time to acknowledge acceptance and no responding
business document.

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent
 :

RespondingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgment)

1.1.2. signal(AcceptanceAcknowledgment)

1.2. return(BusinessSignal)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(AcceptanceAcknowledgment)

Figure 3.36 Agent-Service-Agent Interaction Pattern—I

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 66of 73

Time to perform equals time to acknowledge acceptance and a responding
business document.

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent
 :

RespondingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgment)

1.2. return(BusinessSignal)

1.1.2. response(BusinessAction)

1.1.2.1. signal(ReceiptAcknowledgment)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

Figure 3.37 Agent-Service-Agent Interaction Pattern—II

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 67of 73

Time to perform is greater than time to acknowledge acceptance.

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent
 :

RespondingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgment)

1.2. return(BusinessSignal)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

1.1.2. signal(AcceptanceAcknowledgment)

1.1.3. response(BusinessAction)

1.1.3.1. signal(ReceiptAcknowledgment)

Figure 3.38 Agent-Service-Agent Interaction Pattern—III

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 68of 73

Query/Response Activity, Request/Response Activity and
Request/Confirm Activity

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent
 :

RespondingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgment)

1.1.2. response(BusinessAction)

1.1.2.1. signal(ReceiptAcknowledgment)

1.2. return(BusinessAction)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(BusinessAction)

Figure 3.39 Agent-Service-Agent Interaction Pattern—IV

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 69of 73

Information Distribution Activity and Notification Activity

 :

OriginatingService
 :

RespondingService
 :

OriginatingAgent
 :

RespondingAgent

1. callTxn()

1.1. request(BusinessAction)

1.1.1. signal(ReceiptAcknowledgment)

2. queryTxn()

2.1. return(BusinessAction)

2.1.1. submit(ReceiptAcknowledgment)

1.2. return(BusinessSignal)

Figure 3.40 Agent-Service-Agent Interaction Pattern—V

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 70of 73

Appendix I: Example
Commercial
Contract
Formations

The following commercial contract formations are taken from:

“The Commercial use of Electronic Data Interchange, Section of Business Law
American Bar Association, A report and model trading partner agreement,
http://www.abanet.org/buslaw/catalog/5070258.html.”

Example1:

XYZ has specified its mainframe computer as its Receipt Computer. ABC sends
a Document to XYZ’s Provider, but the Document is never made accessible
(fails to pass message schema validation in RNIF8) to XYZ’s Receipt Computer.
ABC’s transmission of the legal document has no legal effect.

Example 2:

XYZ properly receives a purchase order from ABC but never transmits (transfer
layer requirement, i.e. HTTP request must receipt a corresponding 200—OK
response in RNIF) in return either a functional ACKNOWLEDGMENT
(ACKNOWLEDGMENT of receipt) or an Acceptance Document (partners
agree to the nature of an Acceptance Document9, figures below specify this
agreements as “closing message”). No contract has been formed but XYZ is
liable for any damages suffered by ABC, if any, from XYZ’s failure to provide
verification as required (the HTTP response from posting this document or
signal must be 200 otherwise a business user at XYZ should be notified of this
failure to transmit).

8 Partners should be aware of the fact that passing grammar validation with respect to a RN DTD is insufficient to claim
“Readability” as there could still be many, many errors in both content and structure. It is recommended that Partners be
made aware of this issue when signing their TPAs.
9 The Acceptance Document is either a non-substantive acknowledgement of acceptance, a substantive
acknowledgement of acceptance or a post-processing business document, e.g. shipping order returned to Accept a
purchase order.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 71of 73

Example 3:

XYZ properly receives (acknowledges receipt) a purchase order from ABC by
which its terms are open for 10 days. XYZ properly transmits an Acceptance
Document within the 10 day period, but the Acceptance Document is not
“properly received” (passes message schema validation10) until the 11th day. No
contract is formed. (Note that the contract is properly formed upon proper
receipt of an Acceptance Document and not on the verification of receipt of the
Acceptance Document. Hence the BOV does not specify the verification of
receipt. Note that the requirement to always verify receipt of a Business
Document as the FSV allows the accepting partner to know that the contract has
or has not been properly formed so that they can take action accordingly.)

Example 4:

The Appendix (to the TPA) requires, as to a purchase order, that a purchase
order ACKNOWLEDGMENT (Business Document in RN PIP specification) be
sent as an Acceptance Document. ABC, as buyer, send a purchase order,
receipt, of which is verified by XYZ, as seller, by sending a functional
ACKNOWLEDGMENT. However XYZ never sends an Acceptance Document.
No contract for sales has been formed.

Example 5:

XYZ properly transmits an Acceptance Document, which is received by XYZ’s
Provider (VAN) and stored. Meanwhile, ABC properly transmits a revocation of
its offer, which revocation is properly received by XYZ’s Receipt Computer
before the Acceptance Document is forwarded to ABC’s Receipt Computer by
XYZ’s provider. No contract is formed; the revocation is effective.

Example 6:

The Appendix (of the TPA) requires, as to a purchase order, that a purchase
order ACKNOWLEDGMENT (substantive ACKNOWLEDGMENT of
acceptance Business Document in RN PIP specification) be sent as an
Acceptance Document. XYZ, as seller, properly receives a purchase order from
ABC, as buyer, but the price data is missing. XYZ send a functional
ACKNOWLEDGMENT, which identifies the omitted data (RN does not
guarantee that a DTD will always be able to perform these types of checks due
to contextual conditional composition forcing a DTD element’s cardinality
specification to be different to a message guideline element’s cardinality
specification, e.g. see contact information in fromRole and toRole). Under
Section 2.4 (or reference 3 above), XYZ has met its obligations. If XYZ, without
the price data, then sends an Acceptance Document, a contract is formed, with
the price to be determined pursuant to applicable law. See UCC (Uniform
Commercial Code governing commercial contacts in the USA) 2-305.

10 Same as note 1.

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 72of 73

Appendix II:
Understanding
Commercial
Contracts using
X12/EDI

The following examples show how EDI/X12 message guidelines can be used to
implement the commercial transactions described in Appendix I. These examples
are provided to assist business analysts, familiar with EDI/X12 terminology,
translate into the collaboration modeling terminology used in this document.

Example 1:

1. Initiating party sends PO (850).

2. Responding party sends functional ACKNOWLEDGMENT (997).

§ timeToPeform = timeToAcknowlegeRecept = "x"

§ timeToAcknowlegeAcceptance = N/A

Example 2:

1. Initiating party sends PO (850).

2. Responding party sends functional ACKNOWLEDGMENT (997).

3. Responding party sends PO ACKNOWLEDGMENT that substantively
acknowledges acceptance (contains product identification and quantity) the
content of the PO (855).

§ timeToAcknowlegeRecept="x"

§ timeToPeform = timeToAcknowlegeAcceptance = "y"

Example 3:

1. Initiating party sends PO (850).

2. Responding party sends functional ACKNOWLEDGMENT (997).

3. Responding party sends PO ACKNOWLEDGMENT that non-substantively
acknowledges acceptance of the content of the PO (824)

§ timeToAcknowlegeRecept="x"

§ timeToPeform = timeToAcknowlegeAcceptance = "y"

 E-business Collaboration Design Patterns

© 2000 Edifecs Page 73of 73

Example 4:

1. Initiating party sends PO (850).

2. Responding party sends functional ACKNOWLEDGMENT (997).

3. Responding party sends shipping notice (856).

§ timeToAcknowlegeRecept="x"

§ timeToAcknowlegeAcceptance = N/A, timeToPeform = "y"

Example 5:

1. Initiating party sends PO (850).

2. Responding party delivers the goods e.g. on-line software.

§ timeToAcknowlegeRecept = N/A,

§ timeToAcknowlegeAcceptance = N/A, timeToPeform = N/A

Example 6:

1. Initiating party sends PO (850).

2. Responding party sends functional ACKNOWLEDGMENT (997).

3. Responding party sends PO acknowledges that non-substantively
acknowledges acceptance of the content of the PO (824)

4. Responding party sends shipping notice (856).

§ timeToAcknowlegeRecept="x"

§ timeToAcknowlegeAcceptance = "y,” timeToPeform = "z"

