UN/CEFACT DRAFT
United Nations Centre for Trade Facilitation and Electronic Business

Table of Contents

5
UN/CEFACT - Core Components User's Guide 1
6
Table of Contents 2
7 1.0 Status of this Document 5
2.0 Overview 6
2.1 Introduction 6
2.2 Core Components in the Big Picture 6
2.3 Where and When May Core Components Be Used 7
3.0 Core Component Identification. 8
3.1 How is Information Being Modelled in a Class Diagram? 8
3.2 Introduction to Core Components 8
3.3 Introduction to Core Component Types and Data Types 10
3.4 Introduction to Business Information Entities 12
3.5 What is ‘Context'? 13
3.5.1 Use of Context in Core Component Normalization 14
3.6 Modeling the Business Collaboration 14
3.7 Naming Rules for Core Components and Business Information Entities 18
3.7.1 Introduction 18
3.7.2 Dictionary Entry Names for Core Components (CCT, BCC, ACC and ASCC) 18
3.7.2.1 Dictionary Entry Names for Core Component Types and Data Types 18
3.7.2.2 Dictionary Entry Names for Basic Core Components 20
3.7.2.3 Dictionary Entry Names for Aggregate Core Components 21
3.7.2.4 Dictionary Entry Names for Association Core Components 21
3.7.3 Dictionary Entry Names for Business Information Entities (BBIE, ABIE, ASBIE) 22
3.7.3.1 Dictionary Entry Names for Basic Business Information Entities 22
3.7.3.2 Dictionary Entry Names for Aggregate Business Information Entities 23
3.7.3.3 Dictionary Entry Names for Association Business Information Entities 24
3.7.4 Business Terms 24
3.8 Discovery of Core Components 25
3.8.1 The Discovery Process 25
3.8.2 Detailed Core Component Identification Steps 25
3.8.2.1 Identify Detailed Information 26
3.8.2.2 Refine Business Information Entities 27
3.8.2.3 Identify and Create Core Components 29
3.8.3 Processes Applicable to Multiple Steps 32
3.8.3.1 Searching the Registry / Repository for Core Components 32
3.8.3.2 Forward/Backward Reading Guideline 34
4. Examples 35
4.1 The Boeing Company Spare Parts Procurement Example 35
4.1.1 Business Requirements View (BRV) - Business Process Use Case Description 36
4.1.2 Business Transaction View (BTV) - Business Collaboration Protocol 37
4.1.3 Business Transaction View (BTV) - Business Information 38
4.1.4 Business Transaction View (BTV) - Business Transaction Object Flow Diagram 39
4.1.5 Business Transaction View - Business Information Model 40
4.1.6 Business Service View (BSV) - Sequence Diagram. 41
4.1.7 Business Information Context. 41
4.1.8 Document Class View. 43
4.1.9 Completing the Core Component Model 44
4.1.10 Detailed Class Diagram with Core Components 56
4.1.11 Examples Using Core Components to Build Business Documents 57
4.1.12 The Document Type Definition (DTD) File Describes the Document Data Structure Requirements. 59
4.1.13 The XML Schema File Describes the Document Data Structure and Data Type Requirements 60
4.1.14 A Browser View of the Purchase Order 62
4.1.15 EDIFACT Example 64
4.1.15.1 Introduction 64
4.1.15.2 Table 64
4.1.15.3 Segment Table 68
4.1.15.4 Steps 71
4.1.16 Conclusion 72
4.2 The EAN.UCC FMCG Retail Delivery Example 73
4.2.1 Business Requirements View (BRV). 73
4.2.1.1 Business Process Use Case Description 73
4.2.1.2 Business Process Activity Diagram 74
4.2.1.3 Use-case Realisation 75
4.2.1.4 Business Process Use-case Diagram. 75
4.2.1.6 Business Objects Glossary 77
4.2.2 Business Transaction View (BTV) 78
4.2.2.1 Business Transaction Object Flow Diagram. 78
4.2.2.2 High-level Class Diagrams 80
4.2.2.2.1 Delivery Business Process 80
4.2.2.2.2 Despatch Advice Business Document 81
4.2.2.2.3 Receiving Advice Business Document. 81
4.2.3 Business Service View (BSV) 82
4.2.3.1 Sequence Diagram 82
4.2.3.2 Context Classification Scheme 83
4.2.3.3 Detailed Class Diagram 84
4.2.3.4 Sub-set Business Document Class Diagram (detailed) 85
4.2.3.4.1 Despatch Advice Business Document (Class Diagram): 85
4.2.3.4.2 Receiving Advice Business Document (Class Diagram) 86
4.2.4 Core Component Reference Lists 87
4.2.5 Core Component Overview 89
5. Glossary 94
Appendix A 95
References 95
Appendix B - Administrative Information 96
Disclaimer 96
Contact Information 96
Copyright Statement 96

1.0 Status of this Document

This User Guide is being developed in accordance with the UN/CEFACT TMG procedures for User Guides. This user guide is approved after completion of the TMG review process that ended 1 April 2004.

This document contains information to guide in the interpretation or implementation of the Core Components Technical Specification.

This version: Core Components User’s Guide, Version 1.1 of 13 March 2004.

2.0 Overview

2.1 Introduction

This User Guide illustrates the discovery and implementation of Core Components by elaborating two real life examples in detail: the Boeing Part Ordering System and the EAN.UCC Delivery Process for Fast Moving Consumer Goods (FMCG).
It should be used as a supplemental document to the ebXML Core Components Technical Specification. This User Guide intends to explain the use of Core Components principles through actual examples.
This User Guide shows how the employment of the Core Components methodology may be used for analysing the needed information flows in cross-organisational processes and how it can lead to information models and communication systems that are usable internationally and cross-industry.
This User Guide should be read by management, responsible for the implementation of information systems. End users, information managers and IT personnel may also find the document helpful.

This document must be used in conjunction with the set of UN/CEFACT ebXML specifications (see Appendix A for a list of references).

2.2 Core Components in the Big Picture

In the early days of electronic business, systems were tailored to process proprietary data between business partners; a lot of time was spent in getting the right data in and out of systems. The same data was redefined in different systems as the developer wished. This created a nightmare for system integration and maintenance to match the ever changing and growing requirements in the eBusiness environment.

Today, we have technology like XML and the Internet, which enables the exchange of business data much easier, the same data can be processed across different systems on different platforms. System interoperability is key for eBusiness success. The overhead cost of data inconsistency needs to be improved.
ebXML Core Components enable standardising data across industries. Using standardised data enables consistent data exchange from system to system and industry to industry. The time requirements for interface development are reduced. Industry can focus their time on improving business rather than worry about data flow.
By using Core Components, information is being aligned internationally and crossindustry. Meaning, names, structures and definitions of information entities are set up in a way that allows the use of it beyond the scope of the individual project defining them. Investments in such projects are lasting and secure.
Results are being stored in internationally maintained registries. No project needs to start from scratch, but instead should use the results of earlier projects in similar environments. The Core Components methods allow, support and manage functional deviations between those environments. This not only secures but also lowers the investment needed when setting up an information system across organisational borders.

2.3 Where and When May Core Components Be Used

Core Components and Business Information Entities are used whenever business processes cross-organisational borders. They define the information that is exchanged between organisations semantically and structurally. Core Components are independent of the syntax the information is cast in, they present an opportunity for information to be transmitted in a variety of formats over any type of communication network.
Many technologies exist for exchanging information between automated systems. Technologies may be embedded in integrated business information systems (like Enterprise Resource Planning packages), they may be used in specific middleware or workflow management systems or they may merely be employed to present information through human interfaces to company employees. Core Components are technology neutral. All mentioned technologies, and all usage of these technologies, may (and should) use the Core Component methodology and definitions. This way investments in information systems and in (internal) working procedures are secured, even when the technology is upgraded.
Traditionally, structured information between companies is exchanged using Electronic Data Interchange (EDI). Information that needs to be exchanged in the framework of a business process is cast in a syntax (like EDIFACT or ANSI ASC.X12), packaged in messages and transmitted using a communication network (like Internet). The information to be exchanged can and in the future should be defined using the Core Component methodology, and registered for re-use using an ebXML registry.
Using the standard eXtensible Markup Language (XML) of the World Wide Web Consortium (W3C) more advanced systems can use the same Core Component definitions. XML is more widely adopted by soft- and middleware vendors. XML can even be interpreted by browsers that are used to present information to end-users. So communication based on Core Components is not limited to application-to-application systems, but can also be used in application-to-human communication that crosses organisational borders. The illustrations in Section 4 show how the syntax neutral core components can be used in a syntax specific format, such as XML or EDIFACT.
XML messages may also be used in information presentation (webforms-like) systems, and in webservices that are offered commercially to either application systems or human users. The information exchanged in the request for a webservice, and in the response given by the service may and should be defined according to the Core Component methodology. That ensures consistency of information semantics and structure among and between webservices and the client applications.
Summarising, Core Components are being deployed whenever information is exchanged between information systems of different organisations, regardless of the technology used.

3.0 Core Component Identification

3.1 How is Information Being Modelled in a Class Diagram?

There exist many ways to model or structure information that is being stored or exchanged. Core Components are based on Class Diagrams of the Unified Modeling Language (UML) to model information required in a business collaboration. A Class diagram shows object classes, their properties and their relationships. Object classes are the categories of the "things" that are accessed, inspected, manipulated, produced, and worked on in business operations, like products, agreements, parties and events. Object Classes can be tangible or intangible. A Person is a tangible object: "it is of flesh and blood". An Address is an intangible object: one cannot touch an address, it only exists as a piece of information related to a location.

Class diagrams show object classes as boxes with (among other things) their names and their properties (i.e., attributes).

Person	Work Address	Address
Person ID: Identifier		Street: Text
First Name: Text	Home Address	City: Text
Last Name: Text		State/Province: Code

Figure 3-1 Class diagram example

In the example in Figure 3-1 both Person and Address are object classes. Person has five properties: Person ID, First Name, Last Name, Work Address and Home Address. Address has three properties: Street, City and State/Province.

An Object Class can be represented as a box in which the top compartment contains the Object Class name and the bottom compartment contains the properties that are attributes. The Data Type (kind of information) associated with each attribute is indicated next to each property separated from it by a colon.

Associations between Object Classes are indicated by drawing a line between the object classes. If the association means that one object class is the property of another object class (an address is a property of a person) an arrow point is drawn at the side of the object class that represents the property (Address).

3.2 Introduction to Core Components

Core Components (CC) are the (standardised) data elements that are used for constructing (electronic) business documents. Data is the core of any business communication. The ability to define data well is crucial to the success of electronic business.
The Core Component Technical Specification provides guidelines in identifying, defining, and naming of data elements. Core Components are in fact the generic representations of information on UML object classes. Because UML class diagrams have four categories of elements, there are four categories of core components:

- Aggregate Core Components (ACC), that represent Object Classes;
- Basic Core Components (BCC), that represent simple properties of Object Classes;
- Association Core Components (ASCC), that represent relations between Object Classes, where one Object Class is the (complex) property of another Object Class;
- Core Component Types (CCT), that define the type of information that a Basic Core Component may contain, like text, a number or a date.

Taking as an example the class diagram in Figure 3-1, both Person and Address are representations of Aggregate Core Components. Person ID, First Name, Last Name, Street, City and State/Province are Basic Core Components. Work Address and Home Address are Association Core Components (see Figure 3-2).
Each Aggregate Core Component, Basic Core Component and Association Core Component is given a unique name, under which the Core Component can be found in a registry or dictionary. This name is therefore called a "Dictionary Entry Name". The Dictionary Entry Name consists in principle of three parts or "terms": the object class term (the name of the object class), the property term (the property the core component is representing) and the representation term (the name of the data type that is derived from the core component type). The conventions for constructing the dictionary entry name are described in detail in Section 3.7.

Person.	Person. Work.	Address.
Person.		Address. Street.
Person. First Name. Person. Last Name.	Person. Home.	Address. City. Address. State Province.

Figure 3-2 Dictionary Entry Names
Each core component is also given a definition, which describes the semantics (the meaning) of the Core Component. Other attributes of core components are a unique identifier (a unique meaningless number or string) and a number of "business terms" or synonyms. Business terms are names under which the Core Component is known in some business communities. Business terms do not need to be unique.
To understand how data is standardized to form Core Components, it is best to walk through an example. Let us consider the business term name 'Charge Card Expiration Date'. First we analyze the data and give it a definition, then, based on the definition, we identify the data's object class, property term, and representation term as follows:

Definition: The expiration date of a payment card that is associated with an account.
Object Class:
Payment Card

Property Term:	Expiration Date
Representation Term:	Date

The description represents the semantically unique business meaning of the core component in a complete and unambiguous way. The sentences in the description must be clear and concise.

Furthermore, the description should:
a) be unique (within any data dictionary in which it appears)
b) be stated in the singular
c) state what the concept is, not only what it is not
d) be stated as a descriptive phrase or sentence(s)
e) contain only commonly understood abbreviations
f) be expressed without embedding definitions of other data elements or underlying concepts

These rules were taken from ISO 11179-4 (Rules and guidelines for the formulation of data definitions).

The dictionary entry name is derived from the description. This means that the expressions of a dictionary entry name must be included in the description. Any abbreviations or acronyms used in the dictionary entry name must be described in the description.

After the data is analysed and classified, concatenating the Object Class, Property Term, and Representation Term can generate the Dictionary Entry Name. In the "Charge Card Expiration Date" example, the Core Component name is "Payment Card. Expiration. Date" (see Section 3.7 for naming and truncation rules).

Payment Card
Expiration Date: Date

Figure 3-3 Class diagram

3.3 Introduction to Core Component Types and Data Types

An important element in the core component construct is the Core Component Type (CCT). Each Basic Core Component is of a Core Component Type.
Defined are ten Core Components Types. They are listed in table 3-1.
The Core Component Types come with some extra features, called supplementary components, e.g. amounts have a supplementary component that is used to define the
currency identifier. So the currency is implied by the Core Component Type, and does not need to be a separate property in the Class Diagram. The table below shows the supplementary components belonging to the ten Core Component Types.

CCT	Explanation	SupplementaryComponents
Amount. Type	Monetary amounts	Amount Currency. Identifier Amount Currency. Code List Version. Identifier
Binary Object. Type	Binary objects like pictures or sounds	Binary. Format. Text Binary Object. Mime. Code Binary Object. Encoding. Code Binary Object Character set. Code Binary Object. Uniform Resource. Identifier Binary Object Filename. Text
Code. Type	Codes	Code List. Identifier Code List. Agency. Identifier Code List. Agency Name. Text Code List. Name. Text Code List. Version. Identifier Code. Name. Text Language. Identifier Code List. Uniform Resource. Identifier Code List Scheme. Uniform Resource. Identifier
Date Time. Type	Dates, times or combinations of date and time.	Date Time. Format. Text
Identifier. Type	Identifiers	Identification Scheme. Identifier Identification Scheme. Name. Text Identification Scheme Agency. Identifier Identification Scheme. Agency Name. Text Identification Scheme. Version. Identifier Identification Scheme Data. Uniform Resource. Identifier Identification Scheme. Uniform Resource. Identifier
Indicator. Type	Yes/no, on/off, present/not present kind of indication	Indicator. Format. Text
Measure. Type	All kinds of measurements	Measure Unit. Code Measure Unit. Code List Version. Identifier
Numeric. Type	Numeric values.	Numeric. Format. Text

CCT	Explanation	SupplementaryComponents
Quantity. Type	Countable quantities	Quantity. Unit. Code Quantity Unit. Code List. Identifier Quantity Unit. Code List Agency. Identifier Quantity Unit. Code List Agency Name. Text
Text. Type	Text	Language. Identifier Language. Locale. Identifier

Table 3-1 Core Component Types

The values of the content and/or of the supplementary components can be restricted by defining Data Types. For example the data type Country_Code. Type is based on the Core Component Type Code. Type, but restricts the code values to country codes only. A Data Type can be used for multiple Core Components.

A Data Type defines the set of valid values that can be used for a particular Property of a BBIE or BCC. It is defined by specifying restrictions on the CCT from which the Data Type is derived. Where necessary, a Data Type restricts the set of valid values allowed by the CCT on which it is based, by imposing restrictions on the Content Component and/or Supplementary Component.

Each Data Type shall be given a Dictionary Entry Name and a Definition using the rules specified in 3.7.2.1.

3.4 Introduction to Business Information Entities

The actual information exchanged in business collaborations is not defined as Core Components, but as Business Information Entities (BIE) that reflect the business context. For each Core Component category, there is a corresponding BIE category. So there is the Aggregate Business Information Entity (ABIE) corresponding to the Aggregate Core Component (ACC), the Association Business Information Entity (ASBIE) corresponding to the Association Core Component (ASCC), and the Basic Business Information Entity (BBIE) corresponding to the Basic Core Component (BCC). Each individual Business Information Entity must be based on a corresponding Core Component.

Business Information Entities are derived from their corresponding Core Component by applying context (see Section 3.5 for contexts) to the generic (or "context free") Core Component. The context refines the Core Component. The definition is narrowed, the number of properties may be less and the allowed values of the properties may be restricted (e.g., by means of data typing).

Business Information Entities can be identified during Business Process Modeling. If, when analyzing the business information, a Business Information Entity is found that has no corresponding Core Component, a generic Core Component must be defined.

A Business Information Entity may be distinguished from its corresponding Core Component by adding "qualifiers" to the Core Component name. Qualifiers can be added
to the Object Class names and to the property terms. For the example about personal information, Business Information Entities may be specified for applications exchanging personal information of a person living in the US, using the Core Components in Figure 3-2. The Agregate Core Component Person. Details, used in the context of the United States, gets the qualifier US. Therefore the Aggregate Business Information Entity is called US_Person. Details. Figure 3-4 illustrates this example.

Figure 3-4 Examples of Business Information Entities

3.5 What is 'Context'?

The concept of Core Components is based on the assumption that there exist many commonalities in the business information exchanged in different environments. Still differences exist. To manage commonalities and differences in definition and structure of business information the concept of Context was introduced.

The Context of a business relationship defines the environment in such detail, that the specific Business Information Entities can be derived from the more generic Core Components. Core Components are said to be valid in all contexts (they are context free), whereas Business Information Entities, being derived from Core Components, are context specific.

Context is defined using eight categories:

Context category	Description	Example
Business Process	The type of business process	Ordering Delivery
Product Classification	The type of products that the collaboration is about	Parts Consumer Goods
Industry Classification	The type of industry in which the collaboration takes place	Aerospace Fast Moving Consumer Goods (FmCG)
Geopolitical	The location of the partners	International

		Europe
Official constraints	The legislation that applies	US law EU law
Business Process Role	The role the partners play in the process	Buyer Seller
Supporting Role	Roles of relevant parties outside the collaboration	Shipping Agent
System Capabilities	Specific system requirements	EAN.UCC System SAP Intuit

By specifying the business context of a collaboration, the exact structure of the information that is exchanged by means of Business Information Entities in business documents (or otherwise) can be derived. The context is the filter that changes Core Components into the Business Information Entities.

3.5.1 Use of Context in Core Component Normalization

Qualifiers that are used in the naming of Business Information Entities associate a context specific semantic with the Core Component. These qualifiers make up a controlled vocabulary that can have unique semantic within a specific context. For instance, "reserved" used as a qualifier has an order process context semantic, as well as a travel industry context semantic. Rigor in the construction of the controlled vocabularies for qualifiers is as important as rigor in the construction of the controlled vocabulary for core components. A qualifier should be used consistently across the library of core components. The qualifier context category, semantic, and control vocabulary source should be noted.

3.6 Modeling the Business Collaboration

The Business Information Entity and Core Component discovery process, which is described in detail in Section 3.8, starts with the Class diagram that shows the Business Entities that are the subject of the business collaboration process. This high level Class diagram does contain Object Classes and only a few attributes. It defines the scope and boundaries of the information relating to the collaboration. The purpose of the high level Class Diagram is not to model the business documents. So the high level Class Diagram is a picture of the Object Classes the communication will be about. It does not model the communication itself.

At this time, the Object Classes and their associations should be taken as much as possible from the standardised and harmonised repository (if available).

The REA model is an excellent starting point for structuring the High Level Class Diagram that depicts the relevant business entities in a collaboration. REA stands for Resource, Event, and Agent. According to the REA model, a business collaboration can be described as an Event of transferring Resources from a Trading Partner ("Agent") to another Trading Partner, resulting in a dual Economic Event of transferring Economic

Resources in the reverse direction. For example, a Supplier (Agent) transfers ownership of an Automobile (Resource) to a Customer (Agent) in return for which the Customer will provide Money (Resource) to the Supplier.
This basic REA structure is shown in Figure 3-5. The structure models the basic semantics of a business collaboration.

Figure 3-5 Basic REA Ontology

Figure 3-6 The EAN.UCC example of a high level class diagram for Goods Delivery
Following the REA approach, steps for modelling the business collaboration include: 1) modelling a high-level class diagram capturing Object Classes in the collaboration (Figure 3-6), 2) modelling transactional class diagrams involved in the collaboration (Figure 3-7), and 3) combining transactional class diagrams to model a detail class diagram (Figure 3-8). The following paragraphs describe this further. The structure of the information to be exchanged is a subset of the structure that was modeled in the high
level Class diagram. By interviewing business experts the precise meaning of the information entities is determined, including the Business Entity properties.

So for each Transaction or Document the information to be exchanged is defined in a separate detailed Class Diagram, using Business Information Entities.

Figure 3-7 The EAN.UCC example of a transactional class diagram for Receive Advice
When the Transactional Class Diagrams are being developed, no reference should yet be made to the registry or dictionary. The actual information requirement should be modelled, not all information that possibly might be needed. The high level Class Diagram only serves to offer structure, it should not be used as an inspiration to include information in documents to be exchanged that is probably not needed.

After all Transactional Class Diagrams in the Collaboration have been modeled, the Diagrams are combined (but without the Document Object Classes) into the overall detailed Class Diagram (Figure 3-8) that contains all information that is exchanged within the collaboration, and only the information that is being exchanged. This diagram is input to the Business Information Entity and Core Component discovery process. The output of that process leads to an update of the overall detailed Class Diagram with the proper names of the Business Information Entities that were discovered.

Figure 3-8 The EAN.UCC example of an overall detailed class diagram for Goods Delivery Summarising the steps to follow when discovering Core Components:

1. Determine the scope and the boundaries of the information to be exchanged in the business process
2. Draw a high level Class Diagram, using the existing object class associations in the ebXML registry
3. For each transaction, define a subset from the high level Class Diagram
4. Investigate what detailed information needs to be exchanged in the transaction
5. Look up in the registry which Core Components and Business Information Entities fulfil these information requirements
6. Reuse where applicable existing Core Components and Business Information Entities.
7. Define where necessary new Business Information Entities and submit them for inclusion in the registry
8. Draw per transaction a detailed transactional Class Diagram
9. Combine the transactional Class Diagrams into an overall detailed Class Diagram.

Discovery of Core Components is defined and expanded upon later in this document in Section 3.8 and illustrated in the examples of Boeing and EAN.UCC in Section 3.

3.7 Naming Rules for Core Components and Business Information Entities

3.7.1 Introduction

The names for Core Components and Business Information Entities should adhere to a set of rules. The dictionary entry name is derived from the description of the Core Component or Business Information Entity.

The dictionary entry name is unique. The dictionary entry name must be in English, preferably using the spelling in the Oxford English Dictionary. The dictionary entry names must be clear and concise, and not contain any sequences of redundant words.

The individual names of the dictionary entry names must be singular, except when the concept is specifically intended for plurals. The names of the dictionary entry names should consist of letters only. The words in the names can be verbs, nouns, or adjectives. Abbreviations and acronyms in the dictionary entry name can be used, however they must be explained in the description.
A dictionary entry name in principle consists of a number of terms, that each may consist of multiple words. Each word in a term is separated from the others by space character (). Each word within a term must start with an uppercase letter.
3.7.2 Dictionary Entry Names for Core Components (CCT, BCC, ACC and ASCC)

The dictionary entry name of a Core Component consists of the following terms:
Object class term -The name of an object class.
Property term - Represents the property of the object class.
Representation term - Specifies the representation type of the component.
The terms in the dictionary entry name are separated by a period (.) and a space character ().

3.7.2.1 Dictionary Entry Names for Core Component Types and Data Types

Each Core Component Type (CCT) has its own representation terms. The following table is a list of primary and secondary representation terms for the Core Component Types. A Core Component Type in the dictionary entry name is represented by its primary or by one of its secondary representation terms.

Core Component Type	Primary	Secondary Representation Terms
Representation Term	Amount	Graphic, Picture, Sound, Video
Binary Object. Type	Binary Object	
Code. Type	Code	Date, Time
Date Time. Type	Date Time	

Core Component Type	Primary	Secondary Representation Terms
Representation Term		
Identifier. Type	Identifier	
Indicator. Type	Indicator	
Measure. Type	Measure	Value, Rate, Percent
Numeric. Type	Numeric	
Quantity. Type	Quantity	Name
Text. Type	Text	

The dictionary entry name of a Core Component Type consists of a primary representation term, followed by a period, a space character, and the expression Type.

Example:

Representation term:	Date Time
Term:	Type

Dictionary Entry Name: Date Time. Type

More specific restrictions or distinctions for data types can be applied by adding a qualifier term to the relevant secondary or primary representation term. The dictionary entry name of the restricted data type then consists of a qualifier term, a primary or secondary representation term, and the term Type.

An underscore (_) and a space character are placed between the qualifier term and the representation term. A period (.) and a space character are placed between the representation term and the term Type.

Example:

Qualifier term: Language

Representation term: Code
Term: Type

Dictionary Entry Name: Language_ Code. Type

3.7.2.2 Dictionary Entry Names for Basic Core Components

The dictionary entry name of a Basic Core Component (BCC) consists of an object class term, a property term, and a representation term.

The representation term usually consists of a primary or secondary representation term. In certain cases, data types can be used to restrict Core Component values. The representation term for a data type consists of a qualifier and the representation term of the Core Component Type the data type is based on. The qualifier in the representation term is separated from the primary or secondary representation term of the Core Component Type by an underscore and a space character.

If the dictionary entry name of a Basic Core Component consists of a representation term that is equivalent to the last word(s) of the property term, then those last words can be deleted from the property term in the dictionary entry name. This rule is called the Truncation rule.

Example:
Object class term: Goods
Property term: Delivery Date Time
Representation term: Date Time

The dictionary entry name would be:
Goods. Delivery Date Time. Date Time

But becomes as a result of the truncation rule:
Goods. Delivery. Date Time

Another example of the application of the truncation rule would be:
Party. Identification. Identifier

That becomes:
Party. Identifier

3.7.2.3 Dictionary Entry Names for Aggregate Core Components

The Aggregate Core Components (ACC) consist only of an object class term and a representation term.
The expression Details is used as the representation term.
Example:
Object class term: Address
Representation term: Details

Dictionary Entry Name: Address. Details

3.7.2.4 Dictionary Entry Names for Association Core Components

Dictionary entry names for Association Core Components (ASCC) consist of the following:

- Object class term of the Aggregate Core Component that contains the Association Core Component
- Property term that represents the property of the Association Core Component
- Another object class term of the Aggregate Core Component that describes the structure of the Association Core Component.
The Truncation rule of dictionary entry names of Basic Core Components is also valid for Association Core Component's.
Example:
Object class term: Person
Property term: Residence
Object class term: Address

Dictionary Entry Name: Person. Residence. Address

3.7.3 Dictionary Entry Names for Business Information Entities (BBIE, ABIE, ASBIE)

The dictionary entry name for Business Information Enities also consists of an object class term, a property term, and a representation term, but in addition may contain qualifier terms that qualify the object class term or the property term to define the Business Information Entity in a specific business context.

The qualifier term is placed before the object class term or property term. An underscore (_) and a space character () separate the qualifier term from the object class term or property term.

Multiple qualifier terms can be placed before an object class term or property term. Each qualifier term is separated by an underscore and a space character.

A different sequence of qualifier terms does not make the dictionary entry name unique. For example Stored_ Partial_ Goods. Details and Partial_ Stored_ Goods. Details consist of the same qualifier terms, but in a different order. The two expressions do have different semantics, but that does not make them unique.

3.7.3.1 Dictionary Entry Names for Basic Business Information Entities

The dictionary entry name of a Basic Business Information Entity (BBIE) consists of an object class term and its qualifier terms, a property term and its qualifier terms, and finally the Data Type qualifier and the appropriate representation term. The truncation rule applies, but may not be used when either the property term or the representation term is qualified.

The representation term represents the data type of the Basic Business Information Entity. This data type may be further restricted and qualified. For the representation term the same rules apply as for Basic Core Components.
Example:
Qualifier term: Partial
Object class term: Cost
Qualifier term: Period
Property term: Total Amount
Representation term: Amount

Dictionary Entry Name:
Partial_ Cost. Period_ Total Amount. Amount
An example of a BBIE in which the representation term is qualified with a Data Type qualifier is:

Despatch_Shipment Information. Carrier_ Identification. GLN_ Identifier

3.7.3.2 Dictionary Entry Names for Aggregate Business Information Entities

The dictionary entry name of an Aggregate Business Information Entity (ABIE) consists of an object class term and its qualifier terms and the appropriate representation term, which is indicated by Details.

The object class term and representation term are copied exactly from the corresponding Aggregate Core Component, on which the Aggregate Business Information Entity is based.

Example:
Qualifier term: Temporary
Object class term: Address
Representation term: Details

Dictionary Entry Name: Temporary_ Address. Details

3.7.3.3 Dictionary Entry Names for Association Business Information Entities

The dictionary entry name of an Association Business Information Entity (ASBIE) consists of the following:

- Object class term and its qualifier terms
- Property term and its qualifier terms
- Another object class term of the Aggregate Business Information Entity that describes the structure

Association Business Information Entities are always based on Association Core Components.
The object class term, the property term, and the second object class term and representation term are copied exactly from the corresponding Association Core Component, on which the Association Business Information Entity is based.

The dictionary entry name has the following structure:
Qualifier term: Important
Object class term: Person
Qualifier term: Temporary
Property term: Residence
Object class term: Address

Dictionary Entry Name:
Important_ Person. Temporary_ Residence. Address

3.7.4 Business Terms

A business term represents a synonym of a Core Component or Business Information Entity. Various business terms can exist for different Core Components and Business Information Entities. The business term can be the preferred everyday business or industry term. A Core Component can contain multiple business terms.
The business terms need not be based on any naming rule.

3.8 Discovery of Core Components

Discovery and design are a series of steps that utilise the business process definitions and result in standard business documents. The Core Components Technical Specification (CCTS) outlines the discovery and design process at a high-level. This description is supplemented and expanded upon in this User Guide, with inputs from the Core Components Supplementary Documents (CCSD) team and other business process experts and users.

3.8.1 The Discovery Process

A business process should be modeled using a standard approach, the UN/CEFACT Modeling Methodology (UMM), with one of the results being a class diagram. The class diagram shows the business information and inter-relationships.

The high-level steps from business process to Core Component discovery are:

1. Determine the scope and the boundaries of the information to be exchanged in the business process
2. Draw a high level Class Diagram, using the existing object class associations in the ebXML registry
3. For each transaction, define a subset from the high level Class Diagram
4. Investigate what detailed information needs to be exchanged in the transaction
5. Look in the registry for Core Components and Business Information Entities which fulfil these information requirements
6. Reuse where applicable existing Core Components and Business Information Entities.
7. Define where necessary new Business Information Entities and Core Components and submit them for inclusion in the registry
8. Draw per transaction a detailed transactional Class Diagram
9. Combine the transactional Class Diagrams into an overall detailed Class Diagram.

An explanation of steps 1-3 can be found in Sections 3.1 and 3.6. The search of the registry/repository (3.8.3.1) is a process that may be re-used throughout these detailed steps for discovery of each element.

3.8.2 Detailed Core Component Identification Steps

This section explains in detail the steps that should be taken in core component discovery and development. The steps outlined are graphically represented in process flow diagrams. Template examples of the resulting Business Information Entities and Core Components in a spreadsheet are also included to show the progress in executing the process steps. Additional details are defined to assist in this process where appropriate.
The Business Information Entities and Core Components that result from this process can be documented in a spreadsheet prior to submission to the registration and harmonisation process. It is recommended that a spreadsheet with the columns shown in the template
examples be used to capture the data during the discovery process to ensure that all data needed is completed. The process steps are described in a logical manner, although it is recognized that the step order can depend on the business information compiled, library availability, and other business needs. The basic steps are:

- Identify detailed information
- Identify Business Information Entities
- Identify Core Components

3.8.2.1 Identify Detailed Information

The first step is to investigate and compile the relevant business information in the context of the business process. Analyze each piece of data to determine if it is a Basic Business Information Entity (BBIE), Aggregate Business Information Entity (ABIE) or Association Business Information Entity (ASBIE).

Figure 3-9 Review Class Diagram to Identify Detailed Information

The template below (Table 3-2) provides an example of a Basic Business Information Entity, an Aggregate Business Information Entity, and an Association Business Information Entity that were identified during the review of the following part of the class diagram.

Busine ss Term	Object Class Qualifi er	Object Class	Propert y Term Qualifi er	Propert y Term	Data Type Qualifi er	Repres entatio n Term	Dictionary Entry Name	ACC/B CCIABI E/BBIE IASBIE IASCC	Semantic Description	Comments
Part								ABIE	A subject part, assembly, kit or material.	
Part Number								BBIE	The manufacturer's , supplier's or industry standard identity for the subject part, assembly, kit or material.	
Seller								ASBIE	The seller of the part.	
Seller								ABIE	Party selling spare parts to a buyer.	

Table 3-2

3.8.2.2 Refine Business Information Entities

Once the detailed information has been collected in the spreadsheet, the next step is to refine the definition and name of each BIE and to discover or define the CC's on which to base the BIE. The diagram below shows the process for completing this step.

Note: References are given to other diagrams in this section, with following alphabetical keys:

> A: Create CC or BIE.
> B: Use the Forward-Backward Reading Guideline (entry).
> C1: Exit the guideline successfully.
> C2: Exit the guideline and rework the CC or BIE in order to apply the guideline again.

Figure 3-10 Refine BIE's and define CC's
This process primarily involves reviewing and revising the definitions of each BIE to ensure that it has a unique semantic business meaning and that the context characteristics are clear. Whenever possible the applicable Core Component Technical Specification defined context parameters should be documented. The qualifier used in naming a BIE associates a context semantic to a Core Component to create the BIE. If a CC exists on which to base the BIE, one approach to defining the BIE is to start with the CC definition and add any unique characteristics. The other approach is to take the extensive definition of the BIE (business term) and delete phrases/terms that are not meaningful.

Once the definition is completed, then the name is created. Some helpful hints in completing the spreadsheet for either an ABIE or a BBIE or an ASBIE:

- If a CC has been found on which to base the BIE, then in a blank row above the BIE, copy the Object Class and Representation Term of the CC into the appropriate columns. If a BBIE, then also copy the Property Term.
- When naming an ASBIE the Object Class, Property Term and Representation Term should be consistent with the ABIE on which it is based.
- Add any appropriate qualifiers for the Object Class and Property Term.
- If an ABIE, then concatenate Object Class Qualifier(s), Object Class, and Representation Term.
- If a BBIE or ASBIE, then concatenate Object Class Qualifier(s), Object Class, Property Term Qualifier(s), and Representation Term.
- An underscore followed by a space should be inserted between a qualifier and the term. The Object Class and Property Term are followed by a period and a space.
- Eliminate duplicate terms per the truncation rule in 3.7.2.2.
- The name may then be validated by applying the Forward/Backward Reading Guideline (see 3.8.3.2)

The template (Table 3-3) below shows BIE's that have been properly defined and named.

Busine ss Term	Object Class Qualifi er	Object Class	Propert y Term Qualifi er	Propert y Term	\qquad	Repres entatio n Term	Dictionary Entry Name	$\begin{aligned} & \text { ACC/B } \\ & \text { CCIABI } \\ & \text { E/BBIE } \\ & \text { IASBIE } \\ & \text { IASCC } \end{aligned}$	Semantic Description	Comments
Part	Spare Part	Item				Details	Spare Part Item. Details	ABIE	A subject part, assembly, kit or material.	
Part Number	Spare Part	Item	Manufa cturer	Identific ation		Identifie r	Spare Part_ Item. Manufacturer İdentification. Identifier	BBIE	Revise - The manufacturers identification of a spare part item	Was: The manufacture r's, supplier's or industry standard identity for the subject part, assembly, kit or material
Seller	Spare Part	Item	Spare Part	Seller	Spare Part	Seller	Spare Part_ Item. Spare Part_ Seller. Spare Part_ Seller	ASBIE	The seller of the part.	
Seller	Spare Part	Seller				Details	Spare Part_ Seller. Details	ABIE	Party selling spare parts to a buyer.	Merchandise Seller_Party. Details

Table 3-3

3.8.2.3 Identify and Create Core Components

If no existing CC's were found during the initial search of the registry/repository, then new CC's need to be created for the BIE's that were defined. The diagram below identifies the steps that should be taken for Basic Core Components (BCC), Aggregate Core Components (ACC), and Association Core Components (ASCC).

11	1. Format Dictionary Entry Name field
Object Class	2. Insert periods after the Object Class and Property Term.
Property Term	Note: Eliminate duplicate terms with a ' '*', after the first occurrence.
Representation Term 3. Mark newly defined CC. Dictionary Entry Note: Alphabetical letters link to other diagrams.	

Note: References are given to other diagrams in this section, with following alphabetical keys:
A: Create CC or BIE.
B: Use the Forward-Backward Reading Guideline (entry).
C1: Exit the guideline successfully.
C2: Exit the guideline and rework the CC or BIE in order to apply the guideline again.
Figure 3-11: Create CC's
The process of creating and naming CC's is similar to that of a BIE except that the goal is to define reusable CC's that can then be used to create additional BIE's by applying context.

The definition should be developed first and then the name is extracted from the definition. Some helpful hints in completing the spreadsheet for either an ACC or a BCC or an ASCC:

- After filling in the definition in the spreadsheet, then add the Object Class, Property Term and Representation Term for a BCC and an ASCC.
- If an ACC, then only the Object Class and Representation Term columns are completed.
- Concatenate the Object Class, Property Term (for BCC's and ASCC's) and Representation Term to form the Dictionary Entry Name. A period and a space should be inserted between each of the terms.
- Eliminate duplicate terms per the Truncation rule in 3.7.2.2.
- The name may then be validated by applying the Forward/Backward Reading Guideline (see 3.8.3.2)

The template (Table 3-4) below gives examples of new CC’s.

Busine ss Term	Object Class Qualifi er	Object Class	Propert y Term Qualifi er	Propert y Term	Data Type Qualifi er	Repres entatio n Term	Dictionary Entry Name	ACC/B CCIABI E/BBIEI ASBIEI ASCC	Semantic Description	Comments
Part		Item				Details	Item. Details	ACC	An item of merchandise	
Part	Spare Part	Item				Details	Spare Part Item. Details	ABIE	A subject part, assembly, kit or material.	
Item		Item		Identific ation*		Identifie r	Item. Identifier	BCC	The manufacturers identification of an item	
Part Number	Spare Part	Item	Manufa cturer	Identific ation		Identifie r	Spare Part_ Item. Manufacturer İdentification. Identifier	BBIE	Revise - The manufacturers identification of a spare part item	Was: The manufacture r's, supplier's or industry standard identity for the subject part, assembly, kit or material
Part Number	Spare Part	Item	Manufa cturer	Identific ation		Identifie r	Spare Part_ Item. Manufacturer İdentification. Identifier	BBIE	Revise - The manufacturers identification of a spare part item	Was: The manufacture r's, supplier's or industry standard identity for the subject part, assembly, kit or material
Seller		Item		Seller		Seller	Item. Seller	ASCC	The seller of the item.	
Seller	Spare	Item	Spare	Seller	Spare	Seller	Spare Part_	ASBIE	The seller of	

	Part		Part		Part		ltem. Spare Part_Seller. Spare Part_ Seller		the part.
Seller		Seller				Details	Seller. Details	ACC	Party selling merchandise to a buyer.
Seller	Spare Part	Seller				Details	Spare Part_ Seller. Details	ABIE	Party selling spare parts to a buyer.
Merchandise Seller_Party. Details									

Table 3-4

3.8.3 Processes Applicable to Multiple Steps

3.8.3.1 Searching the Registry / Repository for Core Components

In step 5 the registry is searched on the Aggregate Business Information Entity/Aggregate Core Component level. Searching starts once the relevant business information has been compiled.

- Searching on ABIE level:
- Search the registry for an appropriate ABIE.
- If an ABIE is found that fully meets requirements, register re-use.
- If a similar ABIE is found that could meet the requirements with modification, prepare a change request to submit to the harmonization and approval process.
- If no ABIE is found, search for an ACC that meets the business needs.
- If an ACC is found that fully meets requirements, register its re-use and create an ABIE.
- If similar ACC is found that could meet the requirements with modification, prepare a change request to submit to the harmonization and approval process.
- If no ACC is found, define and submit an ACC and ABIE that meet the business needs.
- Suggestion - in searching the repository:
- Compare the Object Classes of the Class Diagram with the Object Class terms.
- Compare the Properties identified in the Class Diagram with known property terms of BBIE's, BCC's, ASBIE's and ASCC's.

Note: References are given to other diagrams in this section, with following alphabetical keys:
A: Create CC or BIE.
B: Use the Forward-Backward Reading Guideline (entry).
C1: Exit the guideline successfully.
C2: Exit the guideline and rework the CC or BIE in order to apply the guideline again.
Figure 3-12 Searching the Registry/Repository
Following the search and discovery process, submissions should be prepared for the harmonization and approval process.

3.8.3.2 Forward/Backward Reading Guideline

This guideline should be used to validate the name of each CC and BIE.

Note: References are given to other diagrams in this section, with following alphabetical keys:
A: Create CC or BIE.
B: Use the Forward-Backward Reading Guideline (entry).
C1: Exit the guideline successfully
C2: Exit the guideline and rework the CC or BIE in order to apply the guideline again.
Figure 3-13 Forward/Backward Reading Guideline

4. Examples

This User Guide contains two implementation examples of the Core Components Technical Specification. These examples show how the guidelines and steps, as elaborated in the previous chapters of this User Guide, may be applied in real business situations.

Two independent teams have prepared the two examples teams. One example was prepared by a team from Boeing company, the other by a team of EAN International / Uniform Code Council. As the teams operated separately from each other, the approach taken differs somewhat and the outcomes are different.

The examples are only meant as illustration. The resulting Business Information Entities and Core Components have not been harmonised. The approaches were the interpretation of the respective teams, and are not normative in any way.

Note: Due to concurrent development of this document and the UMM User's Guide, there are differences in the diagrams, worksheets, etc.

4.1 The Boeing Company Spare Parts Procurement Example

The Boeing Spare Parts Procurement example is an implementation of the UN/CEFACT Core Components Technical Specification. Traditionally, the airline industry has used the Air Transport Association (ATA) standard in Electronic Interchange format to describe this business process. In order to capture the business and data requirements of this process for the purpose of discovering the core components, the UN/CEFACT Modeling Methodology (UMM) was used.

The original Boeing example contains a number of use cases and the documents (BDV, BRV, and BTV) to support the different use case processesbut for the purpose of inclusion of an example in the User Guide, only some of the artefacts of the Place Order Process are shown. Section 4.1.1 shows the Business Process Worksheet that captures information to describe the business process. Section 4.1.2 shows the Business Collaboration Protocol that represents the dynamics of the process and introduces the different Business Entity States. Section 4.1.3 shows how Business Information is derived from the analysis of the Business Entity States. Section 4.1.4 shows the dynamics of one of the Business Transactions within the Business Collaboration Protocol. Section 4.1.5 shows the Business Information Model. Section 4.1.6 through 4.1.10 show the discovery process of Business Information Entities. Section 4.1.11 through 4.1.15 show syntax implementation examples in EDIFACT and XML.

4.1.1 Business Requirements View (BRV) - Business Process Use Case Description

One of these worksheets is filled out for each detail business process.

Form: Business Process	
Business Process Name	Spare parts Ordering on-line.
Description	1. Parts Ordering System has identified that required spare parts should be ordered from the Order Management System. 2. Order Management System evaluates the order information and either acknowledges the order or rejects the order. 3. Order Management System notifies Parts Ordering System when the part is shipped by the supplier.
Business Requirements	Reference to the source requirements documents from Parts Ordering System
Definition	Procure spare parts
Participants	- Parts Ordering System - Order Management System
Preconditions	Customer identifies a need for a spare part. Parts Ordering System is the system for placing an order to procure this part. The Order Management System has links to the suppliers of this spare part.
Begins When	Parts Ordering System submits a spare parts purchase order transaction to the Order Management System.
Ends When	Order Management System sends a final shipped transaction to Parts Ordering System
Exceptions	none
Postconditions	Parts Ordering System received shipment notification from Order Management System.
Supporting Business Collaborations and/or Business Processes	TBD
Lifecycle(s)	TBD

872

4.1.2 Business Transaction View (BTV) - Business Collaboration Protocol (Business Collaboration Object Flow Diagram)

Figure 4-1 Business Collaboration Object Flow Diagram

877
878
879
880
881
882
883

Form: Business Information			
Business Information Name:	Purchase Order Placement		
Description:	Placement of a purchase order		
Business Information Characteristics			
Characteristics or Attributes	Name	Type	Constraint
	Command Code	String	$\underline{1}$
	Part Number	String	$\underline{1}$
	Unit Price Amount	Float	$\underline{1}$
	Specified Shipping Method	String	0.. 1
Business Information Behavior			
Name:	Procure spare parts		
Lifecycle:	Order lifecycle		

4.1.3 Business Transaction View (BTV) - Business Information

The business information must reference all the business entities changing state as a result of the exchange. For each of these business entities the minimum information required to change the state must be identified. In this case different states of the "Order"entity have been analyzed and produced the "Business Information Worksheet" below. This business information serves as input to the discovery of Business Information Entities in Section 4.1.9.

Describe each element or group of elements in the document. Logically related elements can be placed in separate forms (For example, a document may have logically three parts, a header, body, and summary. The body may have further logical partitioning.). Possible values for Occurs include: 1 (one instance), $0 . .1$ (zero on one instance), $0 . .{ }^{*}$ (zero or more instances), 1..* (one or more instances), or n..m (n to minstances where n is less than m). Information "looping" is specified through appropriate occurs values. Possible values for Data Type include primitive data types - such as integer, string, date-type - or a Form Id of another Content Description Form. Referencing another Content Description Form Id represents information hierarchy and nesting. If you happen to know the name of a reusable component from a domain library or the Catalogue of Core Components, then you may reference it. The Semantic Description shall be stated in business terms and shall be unambiguous.

4.1.4 Business Transaction View (BTV) - Business Transaction (Business Transaction Object Flow Diagram)

Figure 4-2 Business Transaction Object Flow Diagram

Figure 4-4 Sequence Diagram

4.1.7 Business Information Context

The Business Information Context form is provided as convenience for aggregating contextual values that affect the analysis of business information. It is intended that this information be obtained from other forms. For example, Industry Segment is specified in the Business Reference Model form. If there is no value for an entry, enter NOT APPLICABLE or NONE whichever is appropriate.

Form: Business Information Context	
Business Information Context Name	[Provide a name for the business information context. Typically this is the name of the associated business transaction. However, it may be appropriate to name it after the name of the associated business collaboration, or higher-level business process construct.]
Form Id:	Spare Parts Order Fulfillment.
Business Process	Aircraft Spare Parts
Product Classification	

Industry Classification	Aerospace Manufacturing Procurement
Geo-Political	International
Official Constraints	Air Transport Association, Federal Aviation Administration
Business Process Role	Purchaser and Manufacturer of Aircraft Spare Parts
Supporting Role	Carrier
System Capabilities	Spare Parts Procurement System

4.1.8 Document Class View

Order Item
Order Transaction
Customer Order
Part
Unit of Measure
Unit Price
Specified Shipping
Specified Shipping Method
Ship to
Quotation
Shipment Date Control
Manufacturer
Priority
Aircraft Registration
Discount
Packaging
Lease
Price Break Order
Procurement Discount
VAT Registration
Acknowledgment
Point of Use Location
Contract
Remark

Order Exception
Sender
Receive
Command
Customer
Supplier
Purchase Order
Batch
Total Control
Send()

Order Exception Item
Customer Order
Part
Replacing Part
Interchangeability
Increase
Decrease
Order
Unit Of Measure
Unit Price
International Currency
Scheduled Shipping
Manufacturer
Discount
Procurement Discount
Packaging
VAT Registration
Acknowledgement
Remark

Figure 4-5 Document Class View

4.1.9 Completing the Core Component Model

Apply the core component identification process for each of the business term on the spreadsheet. The following tables show the results of the data analysis. It is important to note that data that is outside of the business process boundary is discarded (i.e. command code)

$\begin{aligned} & \text { Business } \\ & \text { Term } \end{aligned}$	Object Class Qualifier	Object Class.	Proper ty Term Qualifi er	Property Term.	Data Type Qualifier	Represe ntation Term	Dictionary Entry Name	BCCIA CC/BB IEIABI EI ASCCI ASBIE	Semantic Description	Comments
Comman d Code									Command Code identifies the specific type of telecommunication message or supplemental information used in (1) updating on-line files, (2) initiating procurement and quotation actions, and (3) transmitting inquiry, response and advisory messages.	Not PO Content Data
Internatio nal Currency Code									International Currency Code specifies the national currency corresponding to the Unit Price Amount or Repair Price Amount.	
Purchase Order Count									Purchase Order Count specifies the number of individual purchase orders contained in S1BOOKED.	Not PO Content Data
Batch Number									Batch Number identifies a transmission grouping of part orders (S1BOOKED).	Not PO Content Data
Total Control Quantity									Total Control Quantity is the sum of all Order Quantities in an S1Booked order transmission.	PO Content Data Not use
									Extended Value Total Amount is a transmission control for the S1Booked Command and computed by summing the products	PO Content Data Not use

									Agreement.	
Quotatio n Number	Purchase order	Docu ment	Suppli er Quotat ion	Identifica tion		Identifier	Purchase Order_ Document. Supplier Quotation_ Identification. Identifier	BBIE	revise - The identification assigned by the supplier to a quotation original - Quotation Number is the identity assigned by the supplier to his quotation of price and Lead Time for the subject part.	Price and Lead Time for the subject part.
Custome r Order Number	Purchase Order	Docu ment	Custo mer	Identifica tion		Identifier	Purchase Order_ Document. Customer_ Identfication. Identifier	BBIE	revise - The identification assigned by the customer to an order original - Customer Order Number is the customer's identity number assigned to a specific order for a given part or a specific order for repair/overhaul services for a given part.	
	Purchase Order	Docu ment		Custome r	Custome r	Party	Purchase Order_ Document. Customer. Customer_ Party	ASBIE		
	Purchase Order	Docu ment		Contract	Contract	Docume nt	Purchase Order_ Docment. Contract. Contract_Doc ument	ASBIE		
	Purchase Order	Docu ment		Quote	Quotatio n	Docume nt	Purchase Order_ Document. Quote. Quotation_ Document	ASBIE		
		Item				Details	Item. Details	ACC	The details of a spare part	
		Item		Leasing		Indicator	Item. Leasing. Indicator	BCC	An indicator specifying if an item is for leasing	
	Spare Part	Item		Manufact urer	Manufact urer	Party	Spare Part_ Item. Manufacturer. Manufacturer_ Party	ASBIE		

	Spare Part	Item		Aircraft	Aircraft	Equipme nt	Spare Part Item. Aircraft. Aircraft_Equip ment	ASBIE		
Part Number	Spare Part	Item	Manuf acturer	Identifica tion		Identifier	Spare Part_ Item. Manufacturer Identification. Identifier	BBIE	revise - The manufacturer's identification of a spare part item original - Part Number is the manufacturer's supplier's or industry standard identity for the subject part, assembly, kit or material. Part Number when linked with its Manufacturer Code provides a unique identity for the given item. (note: serial number will be used in the future to replace mfg . code to give uniqueness to the part number)	Part Number when linked with its Manufacturer Code provides a unique identity for the given item.
Lease Indicator	Ordered	Item	Onwar d	Leasing		Indicator	Ordered Item. Onward_ Leasing. Indicator	BBIE	revise - An indicator specifying if an item is ordered for onward leasing Original - Lease Indicator denotes that subject order is placed for lease of the referenced part number.	mple from ATA: or No code to indicate part is bought for lease or not. The lease indicator on the PO signifies that the part ordered is designated for a lease project or lease inventory.
		Line item				Details	Line Item. Details	ACC	The details of a line item	line item needs to be in the control vocabulary that represents a logical grouping of information such as part number, quantity, price, etc.
Order Quantity		Line item		Ordered quantity*		Quantity	Line Item. Ordered. Quantity	BBIE	se - The quantity ordered of a line item original - Order Quantity is the quantity (conforming to the Unit of Measure) originally ordered by the	

							customer or subsequently revised for the specified Customer Order Number, Part Number, Specified Shipping Date and Ship To Code.	
	Line Item	Purchase Order	Purchase Order	Docume nt	Line Item. Purchase Order. Purchase Order_ Document	ASBIE		
	Base charge price	Quantity*		Quantity	Base Charge Price. Quantity	BCC	The base quantity of the charge / price unit amount	please consider dictionary name: Unit Price. Base. Quantity
Unit of Measure Code	Base charge price	Quantity*		Quantity	Base Charge Price. Quantity	BBIE	revise - The base quantity of the unit price original - Unit of Measure Code specifies the type of count, measurement, container or form of the subject part and correlates to the Unit Price Amount.	
	Unit charge price	Amount*		Amount	Unit Charge Price. Amount	BCC	The charge/price amount per unit.	unit price needs to be defined in the control vocabulary or in an aggregate
Unit Price Amount	Unit charge price	Amount*		Amount	Unit Charge Price. Amount	BBIE	revise - The charge/price amount per unit. original - Unit Price Amount is the sell price for one unit of the subject part conforming to the Currency Code, Unit of Measure, and when applicable, Price Break Quantity range.	
	Transp ort	Method		Code	Transport. Method. Code	BCC	The method of transport used for the conveyance of goods or person	Harmonisation please consider the difference between transportation method and transportation mode
Specified Shipping Method	Transp ort	Method		Code	Transport. Method. Code	BBIE	revise - The method of transport used for the conveyance of goods or person	First 2 characters identify method of shipment. Last character identifies

								original - Specified Shipping Method Code specifies the method to be used for transporting a given shipment from the supplier's facility plus the method for paying the transportation costs.	payment method.
		Transp ort		Timefram e	Indicator	Transport. Timeframe. Indicator	BCC	The indicator that specifies a timeframe in relation to the transport date	
Shipment Date Control Indicator		Transp ort	Not before fifteen days	Timefram e	Indicator	Transport. Not Before Fifteen Days_ Timeframe. Indicator	BBIE	revise - The indicator that specifies that an item cannot be transported earlier than fifteen days before the transport date original - Shipment Date Control Indicator specifies that subject order is not to be shipped earlier than fifteen days prior to customer's Specified Shipping Date.	
		Payme nt		Method	Code	Payment. Method. Code	BCC	The code specifying how payment is made	
	Transpor t	Payme nt		Method	Code	Transport_ Payment. Method. Code	BBIE	revise - The code specifying how payment is made for transport costs original - Specified Shipping Method Code specifies the method to be used for transporting a given shipment from the supplier's facility plus the method for paying the transportation costs.	
		Proces sing		Priority	Code	Processing. Priority. Code	BCC	The code specifying the priority of a process	
Priority Code	Purchase Order	Proces sing	Respo nse	Priority	Code	Purchase Order_ Processing. Response_ Priority. Code	BBIE	revise - The code specifying the priority of the response to the order original - Priority Code is a precedence rating (assigned by the customer) designation the urgency for processing and responding to the	

									subject quotation or purchase order.	
		Equip ment		Identifica tion*		Identifier	Equipment. Identifier	BCC	The identification of a unit of an equipment	
Aircraft Registrati on Number	Aircraft	Equip ment	Aviatio n Author ity Assign ed	Identifica tion		Identifier	Aircraft_ Equipment. Aviation Authority Assigned Identification. Identifier	BBIE	revise - The registration identifier assigned to each individual aircraft by the applicable aviation authority. original - Aircraft Registration Number is the registration identity assigned to each individual aircraft by the cognizant national authority.	
Discount Percent									Discount Percent specifies the trade discount applicable to Unit Price Amount.	See Procurement Discount Percent
		Packa ging		Instructio n		Code	Packaging. Instruction. Code	BCC	A code providing a packaging instruction	Packaging is the process of putting the material around the item
Packagin g Code	Aircraft part	Packa ging		Instructio n		Code	Aircraft Part_ Packaging. Instruction. Code	BBIE	revise - A code specifying a packaging instruction for an aircraft part original- Packaging Code specifies the type of container, packaging requirements or material handling devices to be used when shipping subject parts per specified Customer Order Number.	mple from ATA: erence to ATA SPEC300, Packaging Code defines packing condition, material, and container for shipping aircraft part. Specific condition for aircraft regulation on packaging condition so part will not bend or contaminated, i.e. "2" = part container is also build when the part is build. Could have more than one BCC
		Packa ging		Spart Part	Spare Part	Item	Packaging. Spare Part. Spare Part_ Item	ASBIE		
		Unit Price				Details	Unit Price. Details	ACC, ABIE	The details of unit price	

UN/CEFACT - Core Components User’s Guide
Page 51 of 96
Copyright © UN/CEFACT 2003. All Rights Reserved.

Number					Identification. Identifier		Original - VAT Registration Number is the tax registration number of the Customer	order
		Transa ction	Referenc e	Identifier	Transaction. Reference. Identifier	BCC	An identifier to enable reference to a transaction	Note: Obtain BP definition of the word 'transaction'
Acknowl edgment Number		Transa ction	Referenc e	Identifier	Transaction. Reference. Identifier	BBIE	revise - an identifier that is sent in a message to ensure transaction traceability. original acknowledgement Number is a value associated with a particular command, sent to ensure traceability.	Unique number generated when creating a PO, for tracking.
		Locati on	Identifica tion	Code	Location. Identification. Code	BCC	the identifier of a location	Based on CCSD discussion on Code vs Identifier, we recommend this should be location. Identifier.
Point of Use Location Name	Receivin g Storage	Locati on	Identifica tion	Code	Receiving Storage_ Location. Identification. Code	BBIE	se - an identifier of the receiving location for storage original - Point of Use Location Name identifies specific stocking/binning location in a user's facility.	ine 'stocking/binning' ATA definition Location for placing the inventory in a warehouse, the place is called a bin.
		Locati on	Identifica tion*	Identifier	Location. Identifier	BCC	The identification of a location	suggested revision to 000061 location identification code, should be an identifier not code
Ship to Code	Shipment destinati on	Locati on	Identifica tion*	Identifier	Shipment Destination_ Location. Identifier	BBIE	se - The identifier of the shipment destination location original - Ship To Code identifies the shipment destination address including required marks and information that must be displayed on shipping containers. Ship To Code may also convey applicability or exclusion of specific taxes or charges	

							relating to the shipment destination.	
		Inform ation	Text*	Text	Information. Text	BCC	A text providing information	
Remarks Text	Miscellan eous	Inform ation	Text*	Text	Miscellaneous _ Information. Text	BBIE	revise - A text providing miscellaneous information original - Remarks Text provides miscellaneous information not otherwise provided for by dedicated Text Element Identifiers (TEI's) in variable record systems.	
		Party		Details	Party. Details	ACC	Details of an individual, a group or a body having a role in a business function.	
Manufact urer Code	Manufact urer	Party	Identifica tion*	Identifier	Manufacturer_ Party. Identifier	BBIE	revise - The identification of the manufacturer of an item original - Manufacturer Code identifies the manufacturer, government agency or other organization controlling the design and the part number assignment of the subject part.	ATA definition Manufacturer is the creator of the part, and the assigner of the part number. Manufacturer code is not part of the part number, although it might be.
Supplier Code	Vendor	Party	Identifica tion*	Identifier	Vendor_ Party. Identifier	BBIE	revise - The identifier of the vendor original - Supplier Code identifies the originator of Procurement Data and a source of supply for the subject part in Procurement Planning, Provisioning V File and Delivery configuration Data application.	e: Supplier usually refers to parties who supply data information, "Vendor" is used by ATA for supplier who supplies products like spare parts. Distributor vs supplier. Airlines can be a supplier if they want to sell parts, they will have a supplier code, and parts has airline's part number. ATA suggest using Vendor Party. Identifier
Custome r	Custome r	Party	Identifica tion*	Identifier	Customer_ Party.	BBIE	revise - The identifier of the buyer of goods and	t 2 characters identify an airline. Last

UN/CEFACT - Core Components User’s Guide
Page 53 of 96
Copyright © UN/CEFACT 2003. All Rights Reserved.

Identifica tion Code							Identifier		services. Original - Customer Identification Code identifies the airline customer plus the office and or individual receiving or transmitting S1BOOKED and several other transactions.	character is for product identification. Harmonization of synonyms (Customer/Buyer)
	Vendor	Party		Spare Part	Spare Part	Item	Vendor Party. Spare Part. Spare Part_ Item	ASBIE		
Currency									Currency of the associated amount	does not stand alone, rather it is the CCT aligned with an amount
		Packa ge				Details	Package. Details	ACC ABIE	The details of a package	
		Packa ge		Spart Part	Spare Part	Item	Package. Spare Part. Spare Part_ Item	ASBIE		
		Ship to Locati on				Details	Ship to Location. Details	ACC, ABIE	The details of ship to location	
		Shippi ng				Details	Shipping. Details	ACC	The details of shipping	
		Shippi ng		Date*		Date	Shipping. Date	BCC	a date when the shipping from a facility takes place	
Specified Shipping Date	Custome r required	Shippi ng		Date*		Date	Customer Required Shipping. Date	BBIE	revise - The date the customer requires material to be shipped from the supplier's facility original - Specified Shipping Date is the date the customer requires material to be shipped from the supplier's facility for a given purchase order.	
	Custome r Required	Shippi ng		Purchase Order	Purchase Order	Docume nt	Customer Requied Shipping. Purchase Order. Purchase	ASBIE		

4.1.10 Detailed Class Diagram with Core Components

936
937

Figure 4-6 Detailed Class Diagram
The Purchase Order Class Diagram is now updated to show the names of the BIE's that were discovered.

4.1.11 Examples Using Core Components to Build Business Documents

Examples of applying the same Core Components on an ATA Purchase Order Placement

 document and an EDIFACT document is shown below.

Figure 4-7 ATA Purchase Order Placement document
This example shows the use of Core Components as XML metadata tag.
4.1.12 The Document Type Definition (DTD) File Describes the Document Data Structure Requirements

```
<!ELEMENT BaseChargePrice.Quantity (#PCDATA)>
```

<!ELEMENT Customer_Party.Identifier (\#PCDATA) >
<!ELEMENT CustomerRequired_Shipping.Date (\#PCDATA) >
<!ELEMENT Header (Customer_Party.Identifier, Vendor_Party.Identifier) >

<!ELEMENT LineItem (PurchaseOrder_Document.Processing.Code,
PurchaseOrder_Document.Type.Code,
PurchaseOrder_Document.Purpose.Code,
PurchaseOrder_Document.Customer.Identifier,
SparePart_Item.Manufacturer.Identification.Identifier, LineItem.Ordered.Quantity,
BaseChargePrice.Quantity, UnitChargePrice.Amount,
CustomerRequired_Shipping.Date, ShipmentDestination_Location.Identifier,
Manufacturer_Party.Identifier,
PurchaseOrder_Processing.Response_Priority.Code,
AircraftEquipment.AircraftAuthority Identification.Identifier,
PurchaseOrder_Document.SalesContract_Identification.Identifier,
Miscelleanous_Information.Text) >
<!ELEMENT LineItem.Ordered.Quantity (\#PCDATA) >
<!ELEMENT Manufacturer_Party.Identifier (\#PCDATA) >
<!ELEMENT Miscelleanous_Information.Text (\#PCDATA) >
<!ELEMENT PurchaseOrder_Document.Customer.Identifier (\#PCDATA) >
<!ELEMENT PurchaseOrder_Document.Processing.Code (\#PCDATA) >
<!ELEMENT PurchaseOrder_Document.Purpose.Code (\#PCDATA) >
<!ELEMENT PurchaseOrder_Document.Type.Code (\#PCDATA) >
<!ELEMENT PurchaseOrder_Processing.Response_Priority.Code (\#PCDATA) >
<!ELEMENT PurchaseOrder (Header, LineItem) >
<!ELEMENT PurchaseOrder_Document.SalesContract_Identifier.Identifier (\#PCDATA) >
<!ELEMENT ShipmentDestination_Location.Identifier (\#PCDATA) >
<!ELEMENT SparePart_Item.Manufacturer.Identification.Identifier (\#PCDATA) >
<!ELEMENT Transaction.Reference.Identifier (\#PCDATA) >
<!ELEMENT UnitChargePrice.Amount (\#PCDATA) >
<!ELEMENT Vendor_Party.Identifier (\#PCDATA) >
4.1.13 The XML Schema File Describes the Document Data Structure and Data Type Requirements

Figure 4-8 XML Schema (1)

4.1.14 A Browser View of the Purchase Order

Figure 4-10 Browser view (1)

Figure 4-11 Browser view (2)

4.1.15 EDIFACT Example

4.1.15.1 Introduction

The CCSD project identified the Business Information Entities that are to be exchanged in the Aerospace Parts Order Document. As an example, in this document a rendering of that order document in the EDIFACT syntax has been performed.

Rendering in EDIFACT is a manual process, as long as no cross-reference mapping is available between the semantics of EDIFACT segments, elements and codes and BIE's that have been discovered through the process as defined in the Core Components Technical Specification. Still the rendering has been performed as an activity as straightforward as possible. The BIE definitions should contain sufficient information so that it should not be necessary to go back to the business experts.

This has been achieved for approximately 90% of the BIE's. The remaining 10% uncertainty has been worded in remarks, that may be used to improve the discovery process in general or to clarify the way the process should be carried out.

4.1.15.2 Table

The following table shows the mapping of the BIE's to EDIFACT qualified segments and elements. The BIE's are mapped to the segments and elements present in the EDIFACT ORDERS message, as the functional definition of that message ("A message specifying details for goods or services ordered under conditions agreed between the seller and the buyer.") matches the description of the document as it is used in the Aerospace industry.

Most BIE's have been mapped to data elements present in qualified segments. The "EDIFACT name" column in such case lists both the name of the qualified segment and the data element.

Most data in electronic messages is coded. The code values have not been discovered in the CCTS process. When the code values, used in this specific context, are not present in EDIFACT code lists, either they should be requested to be added, or a private code list (identified in the message) should be used.

Dictionary Entry Name	$\begin{aligned} & \text { BC/ } \\ & \text { BBIE } \end{aligned}$	Semantic Description	EDIFA CT SegmentQualifier	$\begin{aligned} & \text { EDIFA } \\ & \text { CT } \\ & \text { element } \end{aligned}$	EDIFACT name
	$\begin{aligned} & \text { ABIE } \\ & \text { ??? } \end{aligned}$	Order Transaction Code specifies the type, category and condition of a customer purchase order (S1BOOKED transactions)	UNH	0065	$\begin{aligned} & \text { Message Type } \\ & =\text { ORDERS } \end{aligned}$
Purchase Order_ Document. Processing. Code	BBIE	The code specifying the order processing type	?	?	Remark: Definition is not clear enough without examples. May be placed in envelope (UNB/UNH), in BGM or in GIS.
Purchase Order Document. Type. Code	BBIE	The code specifying the type of order	BGM	1001	Document name code
Purchase Order_ Document. Purpose. Code	BBIE	The code specifying the order purpose	BGM	1225	Message function code
Purchase Order_ Document. Sales Contract_ Identification. Identifier	BBIE	An identifier of a sales contract between parties	RFF-CT	1154	Contract number
Purchase Order_ Document. Supplier Quotation_ Identification. Identifier	BBIE	The identification assigned by the supplier to a quotation	$\begin{aligned} & \text { RFF- } \\ & \text { AGG } \end{aligned}$	1154	Offer number
Purchase Order_ Document. Customer Identification. Identifier	BBIE	The identification assigned by the customer to an order	BGM	1004	Document Identifier

Spare Part_ Item. Manufacturer_ Identification. Identifier	BBIE	The manufacturer's identification of a spare part item	LIN-BZ	7140	Item identifier Original equipment number Remark: Qualifier = 7143
Line Item. Ordered. Quantity	BBIE	The quantity ordered of a line item	QTY-21	6060	Ordered quantity
Base Charge Price. Quantity	BBIE	The base quantity of the charge / price unit amount	PRI- CAL	5284	Unit price basis value
	Supp. Compon ent	The base quantity of the unit price	$\begin{aligned} & \text { PRI- } \\ & \text { CAL } \end{aligned}$	6411	Measurement unit code Remark: In CC-spec defined as supplementory component. In EDIFACT separate element.
Unit Charge Price. Amount	BBIE	The charge/price amount per unit.	$\begin{aligned} & \text { PRI- } \\ & \text { CAL } \end{aligned}$	5118	Price amount
Customer Required Shipping. Date	BBIE	The date the customer requires material to be shipped from the supplier's facility	DTM-10	2380	Shipment date/time, requested
Transport. Method. Code	BBIE	The method of transport used for the conveyance of goods or person	TDT	8067	Transport mode name code. Remark: only the 10 UN/ECE Rec. 19 codes are allowed here. Probably more options are needed, indicating the transport service requested rather than the mode.
Payment. Method. Code	BBIE	The code specifying how payment is made for transport costs	TOD-5	4215	Transport charges payment method code
Shipment Destination_ Location. Identifier	BBIE	The identifier of the shipment destination location	$\begin{aligned} & \text { NAD- } \\ & \text { ST } \end{aligned}$	3039	Ship to party identifier
Transport. Not Before Fifteen Days Timeframe. Indicator	BBIE	The indicator that specifies that an item cannot be transported earlier than fifteen days before the transport date	SCC-1	4493	Firm Delivery instruction code
Purchase Order_ Processing. Response_ Priority. Code	BBIE	The code specifing the priority of the response to the order	GIS	7365	Processing indicator description code Remark: This segment will be removed effective with directory D.02B. The GIS segment is only present on detail level
Aircraft_ Equipment. Aviation	BBIE	The registration identifier assigned to each individual aircraft by the applicable	GIR-?	7402	Related identification number, object identifier

Authority Assigned_- Identification. Identifier		aviation authority.		Remark: New code to be requested for $7297: S e t ~ t y p e ~ c o d e ~$			
qualifier							
E.g.: "Target							
equipment"					$	$	Packaging terms and
:---							
Aircraft Part_ Packaging. Instruction. Code							

| | | | | segments under the
 applicable segments
 that carry the
 amounts. |
| :--- | :--- | :--- | :--- | :--- | :--- |

4.1.15.3 Segment Table

In the following table the BIE's have been mapped to the EDIFACT ORDERS message.

013	3035 = OY Ordering customer				
0160		----- Segment group 3	C		
0170	RFF	Reference	M	1	
	1153 = VA VAT registration number				
	1154 = Customer_ Organisation. VAT_ Tax				
		Identification. Identifier ---			
0130	NAD	Name and address	C	1	
	3035 = ST Ship to party				
	3039 = Shipment Destination_ Location. Identifier				
0140	LOC	```Place/location identification 3227 = 88 Place of receipt 3225 = Receiving Storage_ Location. Identification. Code```	C	1	
0130	NAD	Name and address 3035 = MF Manufacturer of goods 3039 = Spare Part_ Item. Manufacturer_ Identification. Identifier	C	1	
0130	NAD	Name and address 3035 = VN Vendor 3039 = Vendor_ Party.	M	1	
0410 ---- Segment group 10			C		
0420	TDT	Details of transport 8051 = 20 Main-carriage transport 8067 = Transport. Method. Code --------		1	
0460 ---- Segment group 12				C	
0470	TOD	Terms of delivery or transport	M		
		$4055=5$ Transport charges payment method code			
		4215 = Payment. Method. Code			
04900500	PAC	----- Segment group $13-$---------------			
		Package	M		
		7073 = Aircraft Part_ Packaging. Instruc (conditions)	ction. Code		
		7065 = Aircraft Part_ Packaging. Instruc (description)	ction. Code		
06200630		-- Segment group 16	C		
	SCC	Scheduling conditions 4017 = 1 Firm delivery instruction code 4493 = Delivery instruction code	M	1	

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

4.1.15.4 Steps

Steps that were followed to render the Spare Parts Order Message in the EDIFACT syntax:

1. Compare the functional definition of the document with the definitions of EDIFACT messages. If a definition matches or matches satisfactory, take the message as a basis and request extension of the EDIFACT functional definition with the missing functions. Otherwise, request a new message.
2. For each assembly construct and ABIE, find a segment of which the definition matches, possibly at a more generic level of abstraction. If no segment matches, request a new (generic) segment.
3. If the segment found is qualified, look in the segment's qualifier code list for a qualifier that matches the specific definition of the ABIE. If none is found, request a new one. If the definition of an existing qualifier may be slightly adapted, request a change.
4. Check the structure of the segment. In many cases the structure will not match the structure of the ABIE. Assess whether the BBIE's contained in the ABIE can be accommodated by using in a segment group, and by finding segments for each (cluster of) BBIE('s). If the element and sub-element structure of the segment match the BBIE structure, and if the definitions also match, use the elements. Request changes and additions to the segment structure where appropriate.
5. In matching BBIE's and elements, do not forget to assess the supplementory components as well. They may need to be represented by separate elements or even by separate segments.

Note that these steps and the resulting EDIFACT message is only an example to illustrate that Core Components may be used to define messages in various syntaxes. They are by no means normative. UN/CEFACT may later publish real guidelines and rules on how EDIFACT rendering of Core Components should take place.

4.1.16 Conclusion

In this example, we did a walk thru of identifying Core Components from business terms based on the CC Technical Specification V1.9. When the CC is initially identified, it does not contain any business context or syntax, therefore it can map to any industry's business data.

In the Boeing example, the CC is mapped to the ATA standard. The EDIFACT example in 4.1.15 demonstrates how the same CC can be mapped to another message standard format. The mapping demonstrates that different industries using different terms to represent the same idea make business communication and data integration difficult. Core Components can be used/reused for the same data terms/concept defined in different industries.

Using CC's to define business documents or system data improves the overall business process, and thus, the data is understood by more people in the supply chain, which can result in more business opportunities.

4.2 The EAN.UCC FMCG Retail Delivery Example

Currently, there are no standard global eBusiness models and message sets that cover the Delivery business process in the FMCG Retail business area. In order to improve efficiency and business information interoperability for the FMCG Retail delivery process and to support syntax neutral eBusiness solutions, the business process was modeled using UML. As a result of the creation of the detailed class diagram, Core Components were discovered using the Core Components Technical Specification.

4.2.1 Business Requirements View (BRV)

4.2.1.1 Business Process Use Case Description

Form: Business Process	
Business Process Name	Delivery
Description	Seller advises ShipTo party of the despatch of goods Buyer receives despatch of goods notification Carrier delivers goods to specified location on specified date/time Buyer/ShipTo receives and accepts goods Buyer/ShipTo verifies delivery against despatch advice Carrier informs the Seller that the goods have been delivered
Business Requirements	The seller needs to supply specified goods as per the accepted order to the buyer at a given location and date/time.
Definition	Deliver goods
Participants	Buyer, Seller, ShipTo, ShipFrom and Carrier
Preconditions	Order has been accepted and goods/documentation have been prepared for despatch. One order relates to one delivery. Goods are available to fulfil the order. Location and date/time for delivery are known to the Carrier and Seller. Seller has prepared goods for delivery. Carrier collects goods for delivery.
Begins When	Seller creates despatch advice
Ends When	Buyer/ShipTo has informed the seller what materials were received / not received against the original order and what materials were accepted / not accepted
Postconditions	N/A
Buyer/ShipTo - Accepts the delivery	
Carrier - Has delivered the goods and notified the seller of the delivery	
acceptance by the Buyer	
Buyer/ShipTo - Has verified goods delivered against the order	
Buyer/ShipTo - Has informed the seller what materials were received / not	
received against the original order and what materials were accepted / not	
accepted	
Seller - Is ready to prepare the invoice for the buyer	

Supporting Business Collaborations and/or Business Processes	TBD
Lifecycle(s)	TBD

1243

4.2.1.2 Business Process Activity Model

Figure 4-12 Business Process Activity Model

4.2.1.3 Business Collaboration Use Case Diagram

Figure 4-13 FMCGDelivery-BC2.Delivery
In the activity diagram each time control is handed from one actor to another some kind of collaborative activity takes place. The Business Collaboration depicted above does describe the Business Transactions that will be developed in order to support these collaborative activities.

Note: It does not contain all required Business Transactions. For example the transactions between Carrier and Seller are not included in the business model.

4.2.1.4 Business Process Use-case Diagram

Figure 4-14 Use Case

4.2.1.5 Requirements List

Req. \#	Statement	Source	Date	Status
1	The seller MUST send a despatch advice for each shipment.	Example	11/7/2002	To be included in MIG
2	The seller MUST send the despatch advise prior to delivery of the goods on the Ship-to location.	Example	11/7/2002	Included in activity diagram.
3	The despatch advise MUST contain a identifier that is unique for the seller.	Example	11/7/2002	Included in detailed class diagram, in Document class.
4	Each party MUST be identified using a GLN.	Example	11/7/2002	Included in detailed class diagram.
5	A despatch advise advice MAY reference a maximum of one order.	Example	11/7/2002	Included in detailed class diagram
6	A despatch advise advice MAY reference a maximum of one contract.	Example	11/7/2002	Included in detailed class diagram
7	Each despatch advise MUST indicate the date or datetime of its issue.	Example	11/7/2002	Included in detailed class diagram
8	The despatch advice MUST indicate the buyer and seller, and SHALL indicate the ship-to and/or ship-from where these differ from the buyer and / or seller.	Example	11/7/2002	Included in detailed class diagram, also to be included in MIG.
9	The despatch advise MAY indicate the carrier.	Example	11/7/2002	Add further explanation. Already included in detailed class diagram.
10	A despatch advise advice CAN reference a maximum of one delivery note.	Example	11/7/2002	Included in detailed class diagram
11	A despatch advise advice CAN reference a maximum of one consignment number.	Example	11/7/2002	Included in detailed class diagram
12	Parties agree to use only ISO pallets.	Example	11/7/2002	Requirement needs to be refined. Included in detailed class diagram
13	Parties agree to use only cartons.	Example	11/7/2002	Requirement needs to be refined.
14	Each logistic unit MUST be identified using an SSCC.	Example	11/7/2002	Included in detailed class

				diagram
15	Each item MUST be identified using a GTIN.	Example	$11 / 7 / 2002$	Included in detailed class diagram
16	The despatch advice SHOULD enable a hierarchical description of the shipment, starting with the pallet level and ending with the item level.	Example	$11 / 7 / 2002$	Included in detailed class diagram
17	The despatch advice MUST indicate the items and quantities that have been shipped. Optionally the expiry date and sell by date MAY be included.	Example	$11 / 7 / 2002$	Included in detailed class diagram

1268

4.2.1.6 Business Objects Glossary

(This section details the initial Business Objects, which meet the requirements specified by the use case)

Business Term	GDD key	UID ebXML	Dictionary Entry Name	Definition	Remarks
Buyer	0000001	999960	Buyer Party. Details	Trading partner to which merchandise is sold.	
Seller	0000002	999959	Seller Party. Details	Trading partner selling merchandise to a buyer.	
Carrier	0000003	999956	Carrier Party. Details	Third party undertaking or arranging transport of goods between named points.	
Consignee	0000004	999957	Receiver Party. Details	Identification of the location to where goods will be or have been shipped.	
Consignor	0000005	999958	Ship From Party. Details	Identification of the location from where goods will be or have been shipped.	
Purchase Order	0000000	999999	Related Purchase. Details	Document/message by means of which a buyer initiates a transaction with a seller involving the supply of goods or services as specified, according to conditions set out in an offer, or otherwise known to the buyer	

				managed through the supply chain.
Despatch Advice			Document/message by means of which the supplier or consignor informs the buyer or consignee about the despatch of goods.	
Receiving Advice			Message addressing the business needs related to the goods receipt or advising discrepancies between despatched or ordered/planned goods.	
Consignment				Consignment is a logical grouping of goods (one or more physical entities) that has been consigned to a freight forwarder and is intended to be transported as a whole.
Shipment				

4.2.2 Business Transaction View (BTV)

4.2.2.1 Business Transaction (Business Transaction Object Flow Diagram)

A Business Transaction Activity executes a specified business transaction. A business transaction is a set of business information and business signal exchanges between two business partners that must occur in an agreed format, sequence and time period.

NOTIFICATION PATTERN FOR ADVISE DESPATCH

Figure 4-15 - Business Transaction Object Flow Diagram

NOTIFICATION PATTERN FOR ADVISE RECEIPT

Figure 4-16: Business Transaction Object Flow Diagram

4.2.2.2 High-level Class Diagrams

Business objects from the glossary (see 4.2.1.5) are used to create the high-level class diagram. Business objects contained in the GDD are also used to discover candidates for classes and attributes in the high-level class diagram.

4.2.2.2.1 Delivery Business Process

Figure 4-17
4.2.2.2.2 Despatch Advice Business Document

Figure 4-18

4.2.2.2.3 Receiving Advice Business Document

Figure 4-19

4.2.3 Business Service View (BSV)

4.2.3.1 Sequence Diagram

A service interaction is a mutually binding interaction between an initiating service and a responding service.

Figure 4-20 BC2.Delivery-BT1.AdviseDespatch-SI1.AdviseDespatch

Note: Service-to-Service interaction pattern E is used to design SI1.AdviseDespatch

Figure 4-21 BC2.Delivery-BT1.AdviseDespatch-SI2.AdviseReceipt
Note: Service-to-Service interaction pattern E is used to design SI2.AdviseReceipt

1320

4.2.3.2 Context Classification Scheme

1321 This is the final scheme to specify the values of the 8 context categories of the business process. 1322

Context Categories	Values
Business Process	Delivery
Product Classification	Consumer Goods, Trade Items
Industry Classification	FMCG Retail
Geopolitical	Global
Official Constraint	None
Business Process Role	In All Contexts
Supporting Role	In All Contexts
System Capabilities	EAN.UCC System

1323

1324

4.2.3.3 Detailed Class Diagram

1325
1326

Figure 4-22 Detailed Class Diagram

4.2.3.4 Sub-set Business Document Class Diagram (detailed)

The detailed class diagram from the BSV (see 4.2.3.3) is used as a base to create the subset class diagram for each business document)

4.2.3.4.1 Despatch Advice Business Document (Class Diagram):

Figure 4-23 Document Class Diagram

4.2.3.4.2 Receiving Advice Business Document (Class Diagram)

Figure 4-24 Document Class Diagram
4.2.4 Core Component Reference Lists

		Item				Details	Item. Details	ACC	Details of an item.
Trade Item	Trade	Item				Details	Trade_Item. Details	ABIE	Any trade item (product or service) upon which there is a need to retrieve pre-defined information and that may be priced, or ordered, or invoiced at any point in any supply chain.
		Item		(Identification)		Identifier	Item. Identifier	BCC	A character string used to uniquely identify an item.
GTIN	Trade	Item		Identification	GTIN	Identifier	Trade_ Item. Identification. GTIN_ Identifier	BBIE	The EAN.UCC Global Trade Item Number (GTIN) using the EAN.UCC-8, UCC-12, EAN.UCC-13 or EAN.UCC-14 Data Structure.
		Item		(Identification)		Identifier	Item. Identifier	BCC	A character string used to uniquely identify an item.
Serial Number	Trade	Item	Additional	Identification		Identifier	Trade_Item. Additional_ Identification. Identifier	BBIE	A serial number used to refer to a trade item.
		Item				Details	Item. Details	ACC	Details of an item.
Despatch Item	Despatch	Item				Details	Despatch_Item. Details	ABIE	The individual despatched item.
		Item		(Quantity)		Quantity	Item. Quantity	BCC	The quantity of an item.
Despatched Quantity	Despatch	Item	Despatched	Quantity		Quantity	Despatch_Item. Despatched_ Quantity. Quantity	BBIE	The despatched quantity of a despatched item.
		Item		(Date)		Date	Item. Date	BCC	A date related to an Item.
Expiry Date	Despatch	Item	Expiry	Date		Date	Despatch_Item. Expiry_ Date. Date	BBIE	The date of a despatched item on which the item expires.
Sell By Date	Despatch	Item	Sell By	Date		Date	$\begin{aligned} & \text { Despatch_Item. Sell By_ } \\ & \text { Date. Date } \\ & \hline \end{aligned}$	BBIE	The date of a despatched item on which the item needs to be sold.
		Item				Details	Item. Details	ACC	Details of an item.
Receivedltem	Received	Item				Details	Received_Item. Details	ABIE	The individual received item.
		Item		(Quantity)		Quantity	Item. Quantity	BCC	The quantity of an item.
Delivered Quantity	Received	Item	Delivered	Quantity		Quantity	Received_Item. Delivered_ Quantity. Quantity	BBIE	The quantity of a received item which is delivered.
Received And Accepted Quantity	Received	Item	(Receipt And) Accepted	Quantity		Quantity	Received_Item. Accepted_ Quantity. Quantity	BBIE	The quantity of a received item, which is accepted.
		Container				Details	Container. Details	ACC	Details of a container.
Logistics Unit	Shipping	Container				Details	Shipping_Container. Details	ABIE	A container of any composition established for transport and/or storage that needs to be managed through the supply chain.
		Container		(Identification)		Identifier	Container. Identifier	BCC	A character string used to uniquely identify a container.
SSCC	Shipping	Container		Identification	SSCC	Identifier	Shipping_Container. Identification. SSCC_ Identifier	BBIE	The Serial Shipping Container Code (SSCC), which is a unique identification of a logistic unit (I.e. shipping container) using an 18 -digit data structure.
		Container		(Code)		Code	Container. Code	BCC	A code related to a container.
Logistics Unit Type	Shipping	Container	Type	Code		Code	Shipping_Container. Type_ Code. Code	BBIE	The code for the type of a shipping container.
		Container		(Date)		Date	Container. Date	BCC	The date related to a container.
Production Date	Shipping	Container	Production	Date		Date	Shipping_Container. Production_Date. Date	BBIE	The production date related to a container.
Received Variances		Variance				Details	Variance. Details	ACC	Details of a variance.
	Received	Variance				Details	Received_Variance. Details	ABIE	Details of a received variance.
		Variance		Type		Code	Variance. Type. Code	BCC	A type code of a variance.
Action Type	Received	Variance	Action	Type		Code	$\begin{aligned} & \text { Variance. Action_Type. } \\ & \text { Code } \end{aligned}$	BBIE	The action type code of a received variance.
Discrepancy Nature	Received	Variance	Discrepancy	Type		Code	Variance. Descrepancy_ Type. Code	BBIE	The discrepancy type code of a received variance.
		Variance				Quantity	Variance. Quantity	BCC	A quantity of a variance.
Variance Quantity	Received	Variance				Quantity	Received_Variance. Quantity	BBIE	A quantity of a received variance.

4.2.5 Core Component Overview

The Core Component overview provides a graphical presentation of the structure of the ABIE's and their associated BBIE's and ASBIE's. It also shows on which CC's the BIE's are based.

Figure 4-25
Object: Party

Object : Shipment Information

Figure 4-27

1352
1353
Figure 4-28

1354
1355
Figure 4-29

Object : Shipment Information

Figure 4-30

Figure 4-32

Object: Document

Figure 4-34

Object: Item

Figure 4-35

Object:Item

Figure 4-36

Object : Container

Figure 4-37

Object : Variance

5. Glossary

ABIE Aggregate Business Information Entity
ACC
ANSI
ASBIE
ASC
ATA
BBIE
BCC
CC
CCSD
CCTS
EbXML
EDI
UMM
UN/CEFACT
OASIS
XML

Aggregate Core Component
American National Standards Institute
Association Business Entity
Accredited Standards Committee
Air Transport Association
Basic Business Information Entity
Basic Core Component
Core Component
Core Component Supplemental Document
Core Component Technical Specification
Electronic Business Extensive Markup Language
Electronic Data Interchange
UN/CEFACT Modeling Methodology
United Nations Centre for Trade Facilitation and Electronic Business
Organization for the Advancement of Structured Information Standards
Extensive Markup Language

Appendix A

References

. Core Components Technical Specification, Version 2.01
UN/CEFACT' s Modelling Methodology, Draft CEFACT/TMWG/N090R10
. UN/CEFACT - e-Business Architecture Technical Specification - Revision 0.83
. UN/CEFACT - e-Business Glossary Working Draft Revision 0.53
ebXML Business Process Specification Schema v1.05
OASIS/ebXML Registry Information Model v2.0
OASIS/ebXML Registry Services Specification v2.0
ebXML Requirements Specification v1.06
OASIS/ebXML Collaboration-Protocol Profile and Agreement Specification v2.0
OASIS/ebXML Message Service Specification v2.0
ebXML Technical Report, Business Process and Business Information Analysis Overview v1.0
ebXML Business Process Analysis Worksheets \& Guidelines v1.0
ebXML Technical Report, E-Commerce Patterns v1.0
ebXML Technical Report, Catalog of Common Business Processes v1.0
ebXML Technical Report, Core Component Dictionary v1.04
ebXML Technical Report, Core Component Structure v1.04
UN/CEFACT e-Business Architecture Technical Specification Revision 0.83
Information Technology - Metadata registries: Framework for the Specification and Standardization of Data Elements, International Standardization Organization, ISO 11179-1
. Information Technology - Metadata registries: Classification of Concepts for the Identification of Domains, International Standardization Organization, ISO 11179-2
. Information Technology - Metadata registries: Registry Metamodel, International Standardization Organization, ISO 11179-3
. Information Technology - Metadata registries: Rules and Guidelines for the Formulation of Data Definitions, International Standardization Organization, ISO 11179-4
. Information Technology - Metadata registries: Naming and Identification Principles for Data Elements, International Standardization Organization, ISO 11179-5
. Information Technology - Metadata registries: Framework for the Specification and Standardization of Data Elements, International Standardization Organization, ISO 11179-6

1426

Appendix B - Administrative Information

Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

Contact Information

TMG Chair:

Klaus-Dieter Naujok
Global e-Business Advisory Council
e-mail: klausn@attglobal.net

Copyright Statement

Copyright © UN/CEFACT 2003. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to UN/CEFACT except as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by UN/CEFACT or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and UN/CEFACT DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

